Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Circ Res ; 133(9): 758-771, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37737016

ABSTRACT

BACKGROUND: Atrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility. METHODS: Right atrial appendage tissues were isolated from human patients with AF versus sinus rhythm controls. Western blots, coimmunoprecipitation, and phosphorylation studies were performed to examine how the PP1c (PP1 catalytic subunit)-PPP1R12C interaction causes MLC2a dephosphorylation. In vitro studies of pharmacological MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with electrophysiology studies. RESULTS: In human patients with AF, PPP1R12C expression was increased 2-fold versus sinus rhythm controls (P=2.0×10-2; n=12 and 12 in each group) with >40% reduction in MLC2a phosphorylation (P=1.4×10-6; n=12 and 12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF (P=2.9×10-2 and 6.7×10-3, respectively; n=8 and 8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a and dephosphorylation of MLC2a. Mice treated with lentiviral PPP1R12C vector demonstrated a 150% increase in left atrial size versus controls (P=5.0×10-6; n=12, 8, and 12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in mice treated with lentiviral PPP1R12C vector was significantly higher than in controls (P=1.8×10-2 and 4.1×10-2, respectively; n=6, 6, and 5). CONCLUSIONS: Patients with AF exhibit increased levels of PPP1R12C protein compared with controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.


Subject(s)
Atrial Fibrillation , Protein Phosphatase 1 , Stroke , Animals , Humans , Mice , Atrial Fibrillation/metabolism , Heart Atria/metabolism , Phosphorylation , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
2.
FEBS J ; 290(22): 5322-5339, 2023 11.
Article in English | MEDLINE | ID: mdl-37551968

ABSTRACT

Loss of myocardial mass in a neonatal rat cardiomyocyte culture is studied to determine whether there is a distinguishable cellular response based on the origin of mechano-signals. The approach herein compares the sarcomeric assembly and disassembly processes in heart cells by imposing mechano-signals at the interface with the extracellular matrix (extrinsic) and at the level of the myofilaments (intrinsic). Experiments compared the effects of imposed internal (inside/out) and external (outside/in) loading and unloading on modifications in neonatal rat cardiomyocytes. Unloading of the cellular substrate by myosin inhibition (1 µm mavacamten), or cessation of cyclic strain (1 Hz, 10% strain) after preconditioning, led to significant disassembly of sarcomeric α-actinin by 6 h. In myosin inhibition, this was accompanied by redistribution of intracellular poly-ubiquitin K48 to the cellular periphery relative to the poly-ubiquitin K48 reservoir at the I-band. Moreover, loading and unloading of the cellular substrate led to a three-fold increase in post-translational modifications (PTMs) when compared to the myosin-specific activation or inhibition. Specifically, phosphorylation increased with loading while ubiquitination increased with unloading, which may involve extracellular signal-regulated kinase 1/2 and focal adhesion kinase activation. The identified PTMs, including ubiquitination, acetylation, and phosphorylation, are proposed to modify internal domains in α-actinin to increase its propensity to bind F-actin. These results demonstrate a link between mechanical feedback and sarcomere protein homeostasis via PTMs of α-actinin that exemplify how cardiomyocytes exhibit differential responses to the origin of force. The implications of sarcomere regulation governed by PTMs of α-actinin are discussed with respect to cardiac atrophy and heart failure.


Subject(s)
Actinin , Myocytes, Cardiac , Rats , Animals , Myocytes, Cardiac/metabolism , Actinin/genetics , Actinin/metabolism , Sarcomeres/metabolism , Myosins/metabolism , Ubiquitins/metabolism
3.
bioRxiv ; 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37131731

ABSTRACT

Background: Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, increases thromboembolic stroke risk five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C, the PP1 regulatory subunit targeting atrial myosin light chain 2 (MLC2a), causes hypophosphorylation of MLC2a and results in atrial hypocontractility. Methods: Right atrial appendage tissues were isolated from human AF patients versus sinus rhythm (SR) controls. Western blots, co-immunoprecipitation, and phosphorylation studies were performed to examine how the PP1c-PPP1R12C interaction causes MLC2a de-phosphorylation. In vitro studies of pharmacologic MRCK inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with EP studies. Results: In human patients with AF, PPP1R12C expression was increased two-fold versus SR controls ( P =2.0×10 -2 , n=12,12 in each group) with > 40% reduction in MLC2a phosphorylation ( P =1.4×10 -6 , n=12,12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF ( P =2.9×10 -2 and 6.7×10 -3 respectively, n=8,8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a, and dephosphorylation of MLC2a. Lenti-12C mice demonstrated a 150% increase in LA size versus controls ( P =5.0×10 -6 , n=12,8,12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in Lenti-12C mice was significantly higher than controls ( P =1.8×10 -2 and 4.1×10 -2 respectively, n= 6,6,5). Conclusions: AF patients exhibit increased levels of PPP1R12C protein compared to controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.

4.
Front Physiol ; 14: 1136852, 2023.
Article in English | MEDLINE | ID: mdl-37064918

ABSTRACT

Introduction: Hypertrophic cardiomyopathy (HCM) is a cardiovascular genetic disease caused largely by sarcomere protein mutations. Gaps in our understanding exist as to how maladaptive sarcomeric biophysical signals are transduced to intra- and extracellular compartments leading to HCM progression. To investigate early HCM progression, we focused on the onset of myofilament dysfunction during neonatal development and examined cardiac dynamics, coronary vascular structure and function, and mechano-transduction signaling in mice harboring a thin-filament HCM mutation. Methods: We studied postnatal days 7-28 (P7-P28) in transgenic (TG) TG-cTnT-R92Q and non-transgenic (NTG) mice using skinned fiber mechanics, echocardiography, biochemistry, histology, and immunohistochemistry. Results: At P7, skinned myofiber bundles exhibited an increased Ca2+-sensitivity (pCa50 TG: 5.97 ± 0.04, NTG: 5.84 ± 0.01) resulting from cTnT-R92Q expression on a background of slow skeletal (fetal) troponin I and α/ß myosin heavy chain isoform expression. Despite the transition to adult isoform expressions between P7-P14, the increased Ca2+- sensitivity persisted through P28 with no apparent differences in gross morphology among TG and NTG hearts. At P7 significant diastolic dysfunction was accompanied by coronary flow perturbation (mean diastolic velocity, TG: 222.5 ± 18.81 mm/s, NTG: 338.7 ± 28.07 mm/s) along with localized fibrosis (TG: 4.36% ± 0.44%, NTG: 2.53% ± 0.47%). Increased phosphorylation of phospholamban (PLN) was also evident indicating abnormalities in Ca2+ homeostasis. By P14 there was a decline in arteriolar cross-sectional area along with an expansion of fibrosis (TG: 9.72% ± 0.73%, NTG: 2.72% ± 0.2%). In comparing mechano-transduction signaling in the coronary arteries, we uncovered an increase in endothelial YAP expression with a decrease in its nuclear to cytosolic ratio at P14 in TG hearts, which was reversed by P28. Conclusion: We conclude that those early mechanisms that presage hypertrophic remodeling in HCM include defective biophysical signals within the sarcomere that drive diastolic dysfunction, impacting coronary flow dynamics, defective arteriogenesis and fibrosis. Changes in mechano-transduction signaling between the different cellular compartments contribute to the pathogenesis of HCM.

5.
Front Physiol ; 13: 1028345, 2022.
Article in English | MEDLINE | ID: mdl-36467694

ABSTRACT

In the heart, alternative splicing of the igf-I gene produces two isoforms: IGF-IEa and IGF-IEc, (Mechano-growth factor, MGF). The sequence divergence between their E-domain regions suggests differential isoform function. To define the biological actions of MGF's E-domain, we performed in silico analysis of the unique C-terminal sequence and identified a phosphorylation consensus site residing within a putative 14-3-3 binding motif. To test the functional significance of Ser 18 phosphorylation, phospho-mimetic (S/E18) and phospho-null (S/A18) peptides were delivered to mice at different doses for 2 weeks. Cardiovascular function was measured using echocardiography and a pressure-volume catheter. At the lowest (2.25 mg/kg/day) and highest (9 mg/kg/day) doses, the peptides produced a depression in systolic and diastolic parameters. However, at 4.5 mg/kg/day the peptides produced opposing effects on cardiac function. Fractional shortening analysis also showed a similar trend, but with no significant change in cardiac geometry. Microarray analysis discovered 21 genes (FDR p < 0.01), that were expressed accordant with the opposing effects on contractile function at 4.5 mg/kg/day, with the nuclear receptor subfamily 4 group A member 2 (Nr4a2) identified as a potential target of peptide regulation. Testing the regulation of the Nr4a family, showed the E-domain peptides modulate Nr4a gene expression following membrane depolarization with KCl in vitro. To determine the potential role of 14-3-3 proteins, we examined 14-3-3 isoform expression and distribution. 14-3-3γ localized to the myofilaments in neonatal cardiac myocytes, the cardiac myocytes and myofilament extracts from the adult heart. Thermal shift analysis of recombinant 14-3-3γ protein showed the S/A18 peptide destabilized 14-3-3γ folding. Also, the S/A18 peptide significantly inhibited 14-3-3γ's ability to interact with myosin binding protein C (MYPC3) and phospholamban (PLN) in heart lysates from dobutamine injected mice. Conversely, the S/E18 peptide showed no effect on 14-3-3γ stability, did not inhibit 14-3-3γ's interaction with PLN but did inhibit the interaction with MYPC3. Replacing the glutamic acid with a phosphate group on Ser 18 (pSer18), significantly increased 14-3-3γ protein stability. We conclude that the state of Ser 18 phosphorylation within the 14-3-3 binding motif of MGF's E-domain, modulates protein-protein interactions within the 14-3-3γ interactome, which includes proteins involved in the regulation of contractile function.

6.
Mol Cell Biochem ; 477(6): 1803-1815, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35316461

ABSTRACT

The cardiac isoform of troponin I has a unique N-terminal extension (~ 1-30 amino acids), which contributes to the modulation of cardiac contraction and relaxation. Hearts of various species including humans produce a truncated variant of cardiac troponin I (cTnI-ND) deleting the first ~ 30 amino acids as an adaption in pathophysiological conditions. In this study, we investigated the impact of cTnI-ND chronic expression in transgenic mouse hearts compared to wildtype (WT) controls (biological n = 8 in each group). We aimed to determine the global phosphorylation effects of cTnI-ND on the cardiac proteome, thereby determining the signaling pathways that have an impact on cardiac function. The samples were digested and isobarically labeled and equally mixed for relative quantification via nanoLC-MS/MS. The peptides were then enriched for phospho-peptides and bioinformatic analysis was done with Ingenuity Pathway Analysis (IPA). We found approximately 77% replacement of the endogenous intact cTnI with cTnI-ND in the transgenic mouse hearts with 1674 phospho-proteins and 2971 non-modified proteins. There were 73 significantly altered phospho-proteins; bioinformatic analysis identified the top canonical pathways as associated with integrin, protein kinase A, RhoA, and actin cytoskeleton signaling. Among the 73 phospho-proteins compared to controls cTnI-ND hearts demonstrated a significant decrease in paxillin and YAP1, which are known to play a role in cell mechano-sensing pathways. Our data indicate that cTnI-ND modifications in the sarcomere are sufficient to initiate changes in the phospho-signaling profile that may underly the chronic-adaptive response associated with cTnI cleavage in response to stressors by modifying mechano-sensitive signaling pathways.


Subject(s)
Tandem Mass Spectrometry , Troponin I , Amino Acids , Animals , Calcium/metabolism , Mice , Mice, Transgenic , Myocardial Contraction , Myocardium/metabolism , Peptides , Phosphorylation , Signal Transduction , Troponin I/chemistry , Troponin I/genetics , Troponin I/metabolism
7.
Mol Pharmacol ; 101(5): 286-299, 2022 05.
Article in English | MEDLINE | ID: mdl-35236770

ABSTRACT

We tested the hypothesis that isoform shifts in sarcomeres of the immature heart modify the effect of cardiac myosin-directed sarcomere inhibitors and activators. Omecamtiv mecarbil (OM) activates tension and is in clinical trials for the treatment of adult acute and chronic heart failure. Mavacamten (Mava) inhibits tension and is in clinical trials to relieve hypercontractility and outflow obstruction in advanced genetic hypertrophic cardiomyopathy (HCM), which is often linked to mutations in sarcomeric proteins. To address the effect of these agents in developing sarcomeres, we isolated heart fiber bundles, extracted membranes with Triton X-100, and measured tension developed over a range of Ca2+ concentrations with and without OM or Mava treatment. We made measurements in fiber bundles from hearts of adult nontransgenic (NTG) controls expressing cardiac troponin I (cTnI), and from hearts of transgenic (TG-ssTnI) mice expressing the fetal/neonatal form, slow skeletal troponin I (ssTnI). We also compared fibers from 7- and 14-day-old NTG mice expressing ssTnI and cTnI. These studies were repeated with 7- and 14-day-old transgenic mice (TG-cTnT-R92Q) expressing a mutant form of cardiac troponin T (cTnT) linked to HCM. OM increased Ca2+-sensitivity and decreased cooperative activation in both ssTnI- and cTnI-regulated myofilaments with a similar effect: reducing submaximal tension in immature and mature myofilaments. Although Mava decreased tension similarly in cTnI- and ssTnI-regulated myofilaments controlled either by cTnT or cTnT-R92Q, its effect involved a depressed Ca2+-sensitivity in the mature cTnT-R92 myofilaments. Our data demonstrate an influence of myosin and thin-filament associated proteins on the actions of myosin-directed agents such as OM and Mava. SIGNIFICANCE STATEMENT: The effects of myosin-targeted activators and inhibitors on Ca2+-activated tension in developing cardiac sarcomeres presented here provide novel, ex vivo evidence as to their actions in early-stage cardiac disorders. These studies advance understanding of the molecular mechanisms of these agents, which are important in preclinical studies employing sarcomere Ca2+-response as a screening approach. The data also inform the use of commonly immature cardiac myocytes generated from human-inducible pluripotent stem cells in screening for sarcomere activators and inhibitors.


Subject(s)
Myofibrils , Sarcomeres , Animals , Calcium/metabolism , Mice , Mice, Transgenic , Myocardial Contraction , Myocardium/metabolism , Myocytes, Cardiac , Myofibrils/metabolism , Myosins/metabolism , Myosins/pharmacology , Troponin I/genetics , Troponin I/metabolism , Troponin I/pharmacology
8.
Int J Cardiol Cardiovasc Dis ; 1(2): 41-47, 2021.
Article in English | MEDLINE | ID: mdl-34734211

ABSTRACT

Serum levels of thin filament proteins, cardiac troponin T (cTnT) and cardiac troponin I (cTnI) employing high sensitivity antibodies provide a state-of-the art determination of cardiac myocyte injury in COVID-19 patients. Although there is now sufficient evidence of the value of these determinations in patients infected with SARS-CoV-2, mechanisms of their release have not been considered in depth. We summarize the importance of these mechanisms with emphasis on their relation to prognosis, stratification, and treatment of COVID-19 patients. Apart from frank necrotic cell death, there are other mechanisms of myocyte injury leading to membrane fragility that provoke release of cTnT and cTnI. We discuss a rationale for understanding these mechanisms in COVID-19 patients with co-morbidities associated with myocyte injury such as heart failure, hypertension, arrythmias, diabetes, and inflammation. We describe how understanding these significant aspects of these mechanisms in the promotion of angiotensin signaling by SARS-CoV-2 can affect treatment options in the context of individualized therapies. Moreover, with likely omic data related to serum troponins and with the identification of elevations of serum troponins now more broadly detected employing high sensitivity antibodies, we think it is important to consider molecular mechanisms of elevations in serum troponin as an element in clinical decisions and as a critical aspect of development of new therapies.

9.
Front Physiol ; 12: 696852, 2021.
Article in English | MEDLINE | ID: mdl-34512376

ABSTRACT

Experiments reported here tested the hypothesis that ß-arrestin-2 is an important element in the preservation of cardiac function during aging. We tested this hypothesis by aging ß-arrestin-2 knock-out (KO) mice, and wild-type equivalent (WT) to 12-16months. We developed the rationale for these experiments on the basis that angiotensin II (ang II) signaling at ang II receptor type 1 (AT1R), which is a G-protein coupled receptor (GPCR) promotes both G-protein signaling as well as ß-arrestin-2 signaling. ß-arrestin-2 participates in GPCR desensitization, internalization, but also acts as a scaffold for adaptive signal transduction that may occur independently or in parallel to G-protein signaling. We have previously reported that biased ligands acting at the AT1R promote ß-arrestin-2 signaling increasing cardiac contractility and reducing maladaptations in a mouse model of dilated cardiomyopathy. Although there is evidence that ang II induces maladaptive senescence in the cardiovascular system, a role for ß-arrestin-2 signaling has not been studied in aging. By echocardiography, we found that compared to controls aged KO mice exhibited enlarged left atria and left ventricular diameters as well as depressed contractility parameters with preserved ejection fraction. Aged KO also exhibited depressed relaxation parameters when compared to WT controls at the same age. Moreover, cardiac dysfunction in aged KO mice was correlated with alterations in the phosphorylation of myofilament proteins, such as cardiac myosin binding protein-C, and myosin regulatory light chain. Our evidence provides novel insights into a role for ß-arrestin-2 as an important signaling mechanism that preserves cardiac function during aging.

10.
J Cell Signal ; 2(3): 162-171, 2021.
Article in English | MEDLINE | ID: mdl-34541579

ABSTRACT

Cardiac sarcomeres express a variant of troponin I (cTnI) that contains a unique N-terminal extension of ~30 amino acids with regulatory phosphorylation sites. The extension is important in the control of myofilament response to Ca2+, which contributes to the neuro-humoral regulation of the dynamics of cardiac contraction and relaxation. Hearts of various species including humans express a stress-induced truncated variant of cardiac troponin I (cTnI-ND) missing the first ~30 amino acids and functionally mimicking the phosphorylated state of cTnI. Studies have demonstrated that upregulation of cTnI-ND potentially represents a homeostatic mechanism as well as an adaptive response in pathophysiology including ischemia/reperfusion injury, beta adrenergic maladaptive activation, and aging. We present evidence showing that cTnI-ND can modify the trigger for hypertrophic cardiomyopathy (HCM) by reducing the Ca2+ sensitivity of myofilaments from hearts with an E180G mutation in α-tropomyosin. Induction of this truncation may represent a therapeutic approach to modifying Ca2+-responses in hearts with hypercontractility or heat failure with preserved ejection fraction.

11.
Mol Cell Biochem ; 476(3): 1337-1349, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33389497

ABSTRACT

It is known that there is an age-related progression in diastolic dysfunction, especially prevalent in postmenopausal women, who develop heart failure with preserved ejection fraction (HFpEF, EF > 50%). Mechanisms and therapies are poorly understood, but there are strong correlations between obesity and HFpEF. We have tested the hypothesis that P21-activated kinase-1 (PAK1) preserves cardiac function and adipose tissue homeostasis during aging in female mice. Previous demonstrations in male mice by our lab that PAK1 activity confers cardio-protection against different stresses formed the rationale for this hypothesis. Our studies compared young (3-6 months) and middle-aged (12-15 months) female and male PAK1 knock-out mice (PAK1-/-) and wild-type (WT) equivalent. Female WT mice exhibited increased cardiac PAK1 abundance during aging. By echocardiography, compared to young WT female mice, middle-aged WT female mice showed enlargement of the left atrium as well as thickening of posterior wall and increased left ventricular mass; however, all contraction and relaxation parameters were preserved during aging. Compared to WT controls, middle-aged PAK1-/- female mice demonstrated worsening of cardiac function involving a greater enlargement of the left atrium, ventricular hypertrophy, and diastolic dysfunction. Moreover, with aging PAK1-/- female mice, unlike male PAK1-/- mice, exhibited increased adiposity with increased accumulation of visceral adipose tissue. Our data provide evidence for the significance of PAK1 signaling as an element in the preservation of cardiac function and adipose tissue homeostasis in females during aging.


Subject(s)
Adiposity , Intra-Abdominal Fat/metabolism , Ventricular Dysfunction/metabolism , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , Aging , Animals , Diastole , Echocardiography , Female , Heart/physiology , Heart Failure/metabolism , Male , Mice , Mice, Knockout , Myocardium/metabolism , Phosphorylation , Stroke Volume , cdc42 GTP-Binding Protein/metabolism
12.
J Cardiovasc Pharmacol ; 77(3): 317-322, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33298734

ABSTRACT

ABSTRACT: A dominant mechanism of sudden cardiac death in the young is the progression of maladaptive responses to genes encoding proteins linked to hypertrophic cardiomyopathy. Most are mutant sarcomere proteins that trigger the progression by imposing a biophysical defect on the dynamics and levels of myofilament tension generation. We discuss approaches for personalized treatments that are indicated by recent advanced understanding of the progression.


Subject(s)
Cardiomyopathy, Hypertrophic/therapy , Death, Sudden, Cardiac/prevention & control , Precision Medicine , COVID-19/complications , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/physiopathology , Clinical Decision-Making , Death, Sudden, Cardiac/etiology , Genetic Predisposition to Disease , Humans , Mutation , Phenotype , Prognosis , Risk Assessment , Risk Factors , Transcriptome
13.
Front Physiol ; 11: 107, 2020.
Article in English | MEDLINE | ID: mdl-32210830

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in different genes mainly encoding myofilament proteins and therefore called a "disease of the sarcomere." Despite the discovery of sarcomere protein mutations linked to HCM almost 30 years ago, the cellular mechanisms responsible for the development of this disease are not completely understood and likely vary among different mutations. Moreover, despite many efforts to develop effective treatments for HCM, these have largely been unsuccessful, and more studies are needed to better understand the cellular mechanisms of the disease. In experiments reported here, we investigated a mouse model expressing the mutant cTnT-R92Q, which is linked to HCM and induces an increase in myofilament Ca2+ sensitivity and diastolic dysfunction. We found that early correction of the diastolic dysfunction by phospholamban knockout (PLNKO) was able to prevent the development of the HCM phenotype in troponin T (TnT)-R92Q transgenic (TG) mice. Four groups of mice in FVB/N background were generated and used for the experiments: (1) non-transgenic (NTG)/PLN mice, which express wild-type TnT and normal level of PLN; (2) NTG/PLNKO mice, which express wild-type TnT and no PLN; (3) TG/PLN mice, which express TnT-R92Q and normal level of PLN; (4) TG/PLNKO mice, which express TnT-R92Q and no PLN. Cardiac function was determined using both standard echocardiographic parameters and speckle tracking strain measurements. We found that both atrial morphology and diastolic function were altered in TG/PLN mice but normal in TG/PLNKO mice. Histological analysis showed a disarray of myocytes and increased collagen deposition only in TG/PLN hearts. We also observed increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation only in TG/PLN hearts but not in TG/PLNKO hearts. The rescue of the HCM phenotype was not associated with differences in myofilament Ca2+ sensitivity between TG/PLN and TG/PLNKO mice. Moreover, compared to standard systolic echo parameters, such as ejection fraction (EF), speckle strain measurements provided a more sensitive approach to detect early systolic dysfunction in TG/PLN mice. In summary, our results indicate that targeting diastolic dysfunction through altering Ca2+ fluxes with no change in myofilament response to Ca2+ was able to prevent the development of the HCM phenotype and should be considered as a potential additional treatment for HCM patients.

14.
Circ Heart Fail ; 12(11): e005835, 2019 11.
Article in English | MEDLINE | ID: mdl-31684756

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a genetic cardiovascular disorder, primarily involving mutations in sarcomeric proteins. HCM patients present with hypertrophy, diastolic dysfunction, and fibrosis, but there is no specific treatment. The sphingosine-1-phosphate receptor modulator, FTY720/fingolimod, is approved for treatment of multiple sclerosis. We hypothesize that modulation of the sphingosine-1-phosphate receptor by FTY720 would be of therapeutic benefit in sarcomere-linked HCM. METHODS: We treated mice with an HCM-linked mutation in tropomyosin (Tm-E180G) and nontransgenic littermates with FTY720 or vehicle for 6 weeks. Compared with vehicle-treated, FTY720-treated Tm-E180G mice had a significant reduction in left atrial size (1.99±0.19 [n=7] versus 2.70±0.44 [n=6] mm; P<0.001) and improvement in diastolic function (E/A ratio: 2.69±0.38 [n=7] versus 5.34±1.19 [n=6]; P=0.004) as assessed by echocardiography. RESULTS: Pressure-volume relations revealed significant improvements in the end-diastolic pressure volume relationship, relaxation kinetics, preload recruitable stroke work, and ejection fraction. Detergent-extracted fiber bundles revealed a significant decrease in myofilament Ca2+-responsiveness (pCa50=6.15±0.11 [n=13] versus 6.24±0.06 [n=14]; P=0.041). We attributed these improvements to a downregulation of S-glutathionylation of cardiac myosin binding protein-C in FTY720-treated Tm-E180G mice and reduction in oxidative stress by downregulation of NADPH oxidases with no changes in fibrosis. CONCLUSIONS: This is the first demonstration that modulation of S1PR results in decreased myofilament-Ca2+-responsiveness and improved diastolic function in HCM. We associated these changes with decreased oxidative modification of myofilament proteins via downregulation of NOX2. Our data support the hypothesis that modification of sphingolipid signaling may be a novel therapeutic approach in HCM.


Subject(s)
Atrial Function, Left/drug effects , Atrial Remodeling/drug effects , Cardiomyopathy, Hypertrophic/drug therapy , Fingolimod Hydrochloride/pharmacology , Myocytes, Cardiac/drug effects , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , Sphingosine-1-Phosphate Receptors/drug effects , Animals , Calcium Signaling/drug effects , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/physiopathology , Diastole , Disease Models, Animal , Female , Fibrosis , Genetic Predisposition to Disease , Male , Mice, Mutant Strains , Mutation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myofibrils/drug effects , Myofibrils/metabolism , Myofibrils/pathology , Oxidative Stress/drug effects , Phenotype , Sphingosine-1-Phosphate Receptors/metabolism , Tropomyosin/genetics
15.
JACC Basic Transl Sci ; 4(3): 404-421, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31312763

ABSTRACT

The development of new treatments for heart failure lack animal models that encompass the increasingly heterogeneous disease profile of this patient population. This report provides evidence supporting the hypothesis that Western Diet-fed, aortic-banded Ossabaw swine display an integrated physiological, morphological, and genetic phenotype evocative of cardio-metabolic heart failure. This new preclinical animal model displays a distinctive constellation of findings that are conceivably useful to extending the understanding of how pre-existing cardio-metabolic syndrome can contribute to developing HF.

16.
Arch Biochem Biophys ; 662: 101-110, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30529103

ABSTRACT

The effects of Mg2+ on the interaction between ADP, a product of the ATPase reaction, and striated muscle myosin-subfragment 1 (S1) were investigated with both functional and spectroscopic methods. Mg2+ inhibited striated muscle myosin ATPase in the presence of F-actin. Significant effects of Mg2+ were observed in both rate constants of NOE build-up and maximal intensities in WaterLOGSY NMR experiments as F-actin concentration increased. In the absence of F-actin, myosin S1 with Mg2+ bound to a fluorescent ADP analog about five-times tighter than without Mg2+. In the presence of F-actin, the affinity of myosin S1 toward the ADP analog significantly decreased both with and without Mg2+. The equilibrium titration of myosin-S1 into F-actin revealed that in the presence of ADP the apparent dissociation constant (Kd) without Mg2+ was more than five-fold smaller than with Mg2+. Further, we examined effects of F-actin, ADP and Mg2+ binding to myosin on the tertiary structure of myosin-S1 using near UV circular dichroism (CD) spectroscopy. Both in the presence and absence of ADP, there was a Mg2+-dependent difference in the near UV CD spectra of actomyosin. Our results show that Mg2+ affects myosin-ADP and actin-myosin interactions which may be reflected in myosin ATPase activity.


Subject(s)
Actins/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/metabolism , Magnesium/metabolism , Muscle, Striated/metabolism , Animals , Muscle, Striated/enzymology , Myosins/antagonists & inhibitors , Myosins/metabolism , Protein Binding
17.
Methods Mol Biol ; 1855: 203-210, 2019.
Article in English | MEDLINE | ID: mdl-30426419

ABSTRACT

Very large proteins (subunit sizes, >200 kDa) are difficult to electrophoretically separate on polyacrylamide gels. A SDS vertical agarose gel system has been developed that has vastly improved resolving power for very large proteins. Proteins with molecular masses between 200 and 4000 kDa can be clearly separated. Inclusion of a reducing agent in the upper reservoir buffer and use of a large pore-sized agarose have been found to be key technical procedures for obtaining optimum protein migration and resolution.


Subject(s)
Electrophoresis/methods , Proteins/isolation & purification , Electrophoresis, Agar Gel , Electrophoresis, Polyacrylamide Gel , Humans , Molecular Weight , Sepharose
18.
J Biol Chem ; 294(8): 2913-2923, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30567734

ABSTRACT

Phosphorylation of cardiac sarcomeric proteins plays a major role in the regulation of the physiological performance of the heart. Phosphorylation of thin filament proteins, such as troponin I and T, dramatically affects calcium sensitivity of the myofiber and systolic and diastolic functions. Phosphorylation of the regulatory protein tropomyosin (Tpm) results in altered biochemical properties of contraction; however, little is known about the physiological effect of Tpm phosphorylation on cardiac function. To address the in vivo significance of Tpm phosphorylation, here we generated transgenic mouse lines having a phosphomimetic substitution in the phosphorylation site of α-Tpm (S283D). High expression of Tpm S283D variant in one transgenic mouse line resulted in an increased heart:body weight ratio, coupled with a severe dilated cardiomyopathic phenotype resulting in death within 1 month of birth. Moderate Tpm S283D mice expression in other lines caused mild myocyte hypertrophy and fibrosis, did not affect lifespan, and was coupled with decreased expression of extracellular signal-regulated kinase 1/2 kinase signaling. Physiological analysis revealed that the transgenic mice exhibit impaired diastolic function, without changes in systolic performance. Surprisingly, we observed no alterations in calcium sensitivity of the myofibers, cooperativity, or calcium-ATPase activity in the myofibers. Our experiments also disclosed that casein kinase 2 plays an integral role in Tpm phosphorylation. In summary, increased expression of pseudo-phosphorylated Tpm impairs diastolic function in the intact heart, without altering calcium sensitivity or cooperativity of myofibers. Our findings provide the first extensive in vivo assessment of Tpm phosphorylation in the heart and its functional role in cardiac performance.


Subject(s)
Actin Cytoskeleton/metabolism , Calcium/metabolism , Cardiomyopathy, Dilated/pathology , Tropomyosin/physiology , Animals , Cardiomyopathy, Dilated/etiology , Cardiomyopathy, Dilated/metabolism , Cells, Cultured , Mice , Mice, Transgenic , Mutation , Myofibrils/metabolism , Myofibrils/pathology , Phosphorylation
19.
JACC Basic Transl Sci ; 4(7): 817-830, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31998850

ABSTRACT

Cardiac myosin binding protein-C (cMyBP-C) phosphorylation prevents aging-related cardiac dysfunction. We tested this hypothesis by aging genetic mouse models of hypophosphorylated cMyBP-C, wild-type equivalent, and phosphorylated-mimetic cMyBP-C for 18 to 20 months. Phosphorylated-mimetic cMyBP-C mice exhibited better survival, better preservation of systolic and diastolic functions, and unchanging wall thickness. Wild-type equivalent mice showed decreasing cMyBP-C phosphorylation along with worsening cardiac function and hypertrophy approaching those found in hypophosphorylated cMyBP-C mice. Intact papillary muscle experiments suggested that cMyBP-C phosphorylation increased cross-bridge detachment rates as the underlying mechanism. Thus, phosphorylating cMyBP-C is a novel mechanism with potential to treat aging-related cardiac dysfunction.

20.
Cardiovasc Res ; 113(8): 915-925, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28379313

ABSTRACT

BACKGROUND: Dilated cardiomoypathies (DCM) are a heterogeneous group of inherited and acquired diseases characterized by decreased contractility and enlargement of cardiac chambers and a major cause of morbidity and mortality. Mice with Glu54Lys mutation in α-tropomyosin (Tm54) demonstrate typical DCM phenotype with reduced myofilament Ca2+ sensitivity. We tested the hypothesis that early sensitization of the myofilaments to Ca2+ in DCM can prevent the DCM phenotype. METHODS AND RESULTS: To sensitize Tm54 myofilaments, we used a genetic approach and crossbred Tm54 mice with mice expressing slow skeletal troponin I (ssTnI) that sensitizes myofilaments to Ca2+. Four groups of mice were used: non-transgenic (NTG), Tm54, ssTnI and Tm54/ssTnI (DTG). Systolic function was significantly reduced in the Tm54 mice compared to NTG, but restored in DTG mice. Tm54 mice also showed increased diastolic LV dimensions and HW/BW ratios, when compared to NTG, which were improved in the DTG group. ß-myosin heavy chain expression was increased in the Tm54 animals compared to NTG and was partially restored in DTG group. Analysis by 2D-DIGE indicated a significant decrease in two phosphorylated spots of cardiac troponin I (cTnI) in the DTG animals compared to NTG and Tm54. Analysis by 2D-DIGE also indicated no significant changes in troponin T, regulatory light chain, myosin binding protein C and tropomyosin phosphorylation. CONCLUSION: Our data indicate that decreased myofilament Ca2+ sensitivity is an essential element in the pathophysiology of thin filament linked DCM. Sensitization of myofilaments to Ca2+ in the early stage of DCM may be a useful therapeutic strategy in thin filament linked DCM.


Subject(s)
Actin Cytoskeleton/metabolism , Cardiomyopathy, Dilated/genetics , Animals , Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Mice, Transgenic , Myocardium/metabolism , Phosphorylation , Tropomyosin/metabolism , Ventricular Myosins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...