Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 435(11): 167954, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37330284

ABSTRACT

The flagellum is a sophisticated nanomachine responsible for motility in Gram-negative bacteria. Flagellar assembly is a strictly choreographed process, in which the motor and export gate are formed first, followed by the extracellular propeller structure. Extracellular flagellar components are escorted to the export gate by dedicated molecular chaperones for secretion and self-assembly at the apex of the emerging structure. The detailed mechanisms of chaperone-substrate trafficking at the export gate remain poorly understood. Here, we structurally characterized the interaction of Salmonella enterica late-stage flagellar chaperones FliT and FlgN with the export controller protein FliJ. Previous studies showed that FliJ is absolutely required for flagellar assembly since its interaction with chaperone-client complexes controls substrate delivery to the export gate. Our biophysical and cell-based data show that FliT and FlgN bind FliJ cooperatively, with high affinity and on specific sites. Chaperone binding completely disrupts the FliJ coiled-coil structure and alters its interactions with the export gate. We propose that FliJ aids the release of substrates from the chaperone and forms the basis of chaperone recycling during late-stage flagellar assembly.


Subject(s)
Bacterial Proteins , Flagella , Molecular Chaperones , Salmonella enterica , Bacterial Proteins/metabolism , Cytoplasm/metabolism , Flagella/metabolism , Molecular Chaperones/metabolism , Protein Transport , Salmonella enterica/metabolism
2.
J Forensic Sci ; 63(2): 431-439, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28464307

ABSTRACT

While type determination on bullets has been performed for over a century, type determination on cartridge cases is often overlooked. Presented here is an example of type determination of ejector marks on cartridge cases from Glock and Smith & Wesson Sigma series pistols using Naïve Bayes and Random Forest classification methods. The shapes of ejector marks were captured from images of test-fired cartridge cases and subjected to multivariate analysis. Naïve Bayes and Random Forest methods were used to assign the ejector shapes to the correct class of firearm with success rates as high as 98%. This method is easily implemented with equipment already available in crime laboratories and can serve as an investigative lead in the form of a list of firearms that could have fired the evidence. Paired with the FBI's General Rifling Characteristics (GRC) database, this could be an invaluable resource for firearm evidence at crime scenes.

3.
Proc Natl Acad Sci U S A ; 107(31): 13684-9, 2010 Aug 03.
Article in English | MEDLINE | ID: mdl-20643958

ABSTRACT

DNA replication requires priming of DNA templates by enzymes known as primases. Although DNA primase structures are available from archaea and bacteria, the mechanism of DNA priming in higher eukaryotes remains poorly understood in large part due to the absence of the structure of the unique, highly conserved C-terminal regulatory domain of the large subunit (p58C). Here, we present the structure of this domain determined to 1.7-A resolution by X-ray crystallography. The p58C structure reveals a novel arrangement of an evolutionarily conserved 4Fe-4S cluster buried deeply within the protein core and is not similar to any known protein structure. Analysis of the binding of DNA to p58C by fluorescence anisotropy measurements revealed a strong preference for ss/dsDNA junction substrates. This approach was combined with site-directed mutagenesis to confirm that the binding of DNA occurs to a distinctively basic surface on p58C. A specific interaction of p58C with the C-terminal domain of the intermediate subunit of replication protein A (RPA32C) was identified and characterized by isothermal titration calorimetry and NMR. Restraints from NMR experiments were used to drive computational docking of the two domains and generate a model of the p58C-RPA32C complex. Together, our results explain functional defects in human DNA primase mutants and provide insights into primosome loading on RPA-coated ssDNA and regulation of primase activity.


Subject(s)
DNA Primase/chemistry , DNA Primers/chemistry , Iron/chemistry , Protein Interaction Domains and Motifs , Sulfur/chemistry , Crystallography, X-Ray , DNA Primase/metabolism , DNA Primers/metabolism , Humans , Iron/metabolism , Models, Molecular , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Replication Protein A/chemistry , Replication Protein A/metabolism , Sulfur/metabolism
4.
J Biol Chem ; 284(36): 24662-72, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19608746

ABSTRACT

Mcm10 is an essential eukaryotic protein required for the initiation and elongation phases of chromosomal replication. Specifically, Mcm10 is required for the association of several replication proteins, including DNA polymerase alpha (pol alpha), with chromatin. We showed previously that the internal (ID) and C-terminal (CTD) domains of Mcm10 physically interact with both single-stranded (ss) DNA and the catalytic p180 subunit of pol alpha. However, the mechanism by which Mcm10 interacts with pol alpha on and off DNA is unclear. As a first step toward understanding the structural details for these critical intermolecular interactions, x-ray crystallography and NMR spectroscopy were used to map the binary interfaces between Mcm10-ID, ssDNA, and p180. The crystal structure of an Mcm10-ID*ssDNA complex confirmed and extended our previous evidence that ssDNA binds within the oligonucleotide/oligosaccharide binding-fold cleft of Mcm10-ID. We show using NMR chemical shift perturbation and fluorescence spectroscopy that p180 also binds to the OB-fold and that ssDNA and p180 compete for binding to this motif. In addition, we map a minimal Mcm10 binding site on p180 to a small region within the p180 N-terminal domain (residues 286-310). These findings, together with data for DNA and p180 binding to an Mcm10 construct that contains both the ID and CTD, provide the first mechanistic insight into how Mcm10 might use a handoff mechanism to load and stabilize pol alpha within the replication fork.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Polymerase I/chemistry , DNA, Single-Stranded/chemistry , Amino Acid Motifs/physiology , Binding Sites/physiology , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Crystallography, X-Ray , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Humans , Minichromosome Maintenance Proteins , Nuclear Magnetic Resonance, Biomolecular , Protein Binding/physiology
5.
Structure ; 16(12): 1892-901, 2008 Dec 10.
Article in English | MEDLINE | ID: mdl-19081065

ABSTRACT

Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae result in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.


Subject(s)
DNA Replication , DNA-Binding Proteins/chemistry , DNA/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Biophysical Phenomena , DNA/genetics , DNA Mutational Analysis , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , Minichromosome Maintenance Proteins , Models, Biological , Models, Molecular , Molecular Sequence Data , Mutation , Nuclear Magnetic Resonance, Biomolecular , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Zinc Fingers/genetics
6.
J Biol Chem ; 283(6): 3338-3348, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18065420

ABSTRACT

Mcm10 plays a key role in initiation and elongation of eukaryotic chromosomal DNA replication. As a first step to better understand the structure and function of vertebrate Mcm10, we have determined the structural architecture of Xenopus laevis Mcm10 (xMcm10) and characterized each domain biochemically. Limited proteolytic digestion of the full-length protein revealed N-terminal-, internal (ID)-, and C-terminal (CTD)-structured domains. Analytical ultracentrifugation revealed that xMcm10 self-associates and that the N-terminal domain forms homodimeric assemblies. DNA binding activity of xMcm10 was mapped to the ID and CTD, each of which binds to single- and double-stranded DNA with low micromolar affinity. The structural integrity of xMcm10-ID and CTD is dependent on the presence of bound zinc, which was experimentally verified by atomic absorption spectroscopy and proteolysis protection assays. The ID and CTD also bind independently to the N-terminal 323 residues of the p180 subunit of DNA polymerase alpha-primase. We propose that the modularity of the protein architecture, with discrete domains for dimerization and for binding to DNA and DNA polymerase alpha-primase, provides an effective means for coordinating the biochemical activities of Mcm10 within the replisome.


Subject(s)
Cell Cycle Proteins/physiology , DNA-Binding Proteins/chemistry , Amino Acid Sequence , Animals , Anisotropy , Cell Cycle Proteins/chemistry , DNA Replication , DNA-Binding Proteins/physiology , DNA-Directed DNA Polymerase/chemistry , Edetic Acid/pharmacology , Humans , Minichromosome Maintenance Proteins , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Spectrometry, Fluorescence/methods , Xenopus laevis
7.
Biochemistry ; 44(46): 15115-28, 2005 Nov 22.
Article in English | MEDLINE | ID: mdl-16285715

ABSTRACT

The cytoplasmic domain of the anion exchange protein (cdb3) serves as a critical organizing center for protein-protein interactions that stabilize the erythrocyte membrane. The structure of the central core of cdb3, determined by X-ray crystallography from crystals grown at pH 4.8, revealed a compact dimer for residues 55-356 and unresolved N- and C-termini on each monomer [Zhang et al. (2000) Blood 96, 2925-2933]. Given that previous studies had suggested a highly asymmetric structure for cdb3 and that pH dependent structural transitions of cdb3 have been reported, the structure of cdb3 in solution at neutral pH was investigated via site-directed spin labeling in combination with conventional electron paramagnetic resonance (EPR) and double electron electron resonance (DEER) spectroscopies. These studies show that the structure of the central compact dimer (residues 55-356) is indistinguishable from the crystal structure determined at pH 4.8. N-Terminal residues 1-54 and C-terminal residues 357-379 are dynamically disordered and show no indications of stable secondary structure. These results establish a structural model for cdb3 in solution at neutral pH which represents an important next step in characterizing structural details of the protein-protein interactions that stabilize the erythrocyte membrane.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/chemistry , Protein Structure, Tertiary , Cytoplasm/chemistry , Electron Spin Resonance Spectroscopy/methods , Fluorescence , Models, Molecular , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Spin Labels , Tryptophan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...