Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Open Forum Infect Dis ; 11(5): ofae212, 2024 May.
Article in English | MEDLINE | ID: mdl-38756763

ABSTRACT

Background: Persistence of HIV-1 in reservoirs necessitates life-long antiretroviral therapy (ART). There are conflicting data using genetic analysis on whether persistence includes an actively replicating reservoir with strong evidence arguing against replication. Methods: We investigated the possibility of ongoing viral evolution during suppressive therapy by comparing near full-length viral genomic sequences using phylogenetic analysis of viral RNA in plasma before therapy initiation early after infection and from virus induced to grow from the latent reservoir after a period of suppressive ART. We also focused our analysis on evidence of selective pressure by drugs in the treatment regimen and at sites of selective pressure by the adaptive immune response. Results: Viral genomes induced to grow from the latent reservoir from 10 participants with up to 9 years on suppressive ART were highly similar to the nearly homogeneous sequences in plasma taken early after infection at ART initiation. This finding was consistent across the entire genome and when the analysis focused on sites targeted by the drug regimen and by host selective pressure of antibody and cytotoxic T cells. The lack of viral evolution away from pretherapy sequences in spite of demonstrated selective pressure is most consistent with a lack of viral replication during reservoir persistence. Conclusions: These results do not support ongoing viral replication as a mechanism of HIV-1 persistence during suppressive ART.

2.
Clin Exp Immunol ; 215(3): 279-290, 2024 02 19.
Article in English | MEDLINE | ID: mdl-37950348

ABSTRACT

CD8 T cells recognize infected and cancerous cells via their T-cell receptor (TCR), which binds peptide-MHC complexes on the target cell. The affinity of the interaction between the TCR and peptide-MHC contributes to the antigen sensitivity, or functional avidity, of the CD8 T cell. In response to peptide-MHC stimulation, the TCR-CD3 complex and CD8 co-receptor are downmodulated. We quantified CD3 and CD8 downmodulation following stimulation of human CD8 T cells with CMV, EBV, and HIV peptides spanning eight MHC restrictions, observing a strong correlation between the levels of CD3 and CD8 downmodulation and functional avidity, regardless of peptide viral origin. In TCR-transduced T cells targeting a tumor-associated antigen, changes in TCR-peptide affinity were sufficient to modify CD3 and CD8 downmodulation. Correlation analysis and generalized linear modeling indicated that CD3 downmodulation was the stronger correlate of avidity. CD3 downmodulation, simply measured using flow cytometry, can be used to identify high-avidity CD8 T cells in a clinical context.


Subject(s)
CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell , Humans , Down-Regulation , Receptors, Antigen, T-Cell/genetics , CD8 Antigens/metabolism , Peptides/metabolism , CD3 Complex/metabolism
3.
Diabetologia ; 66(8): 1516-1531, 2023 08.
Article in English | MEDLINE | ID: mdl-37311878

ABSTRACT

AIMS/HYPOTHESIS: NF-κB activation unites metabolic and inflammatory responses in many diseases yet less is known about the role that NF-κB plays in normal metabolism. In this study we investigated how RELA impacts the beta cell transcriptional landscape and provides network control over glucoregulation. METHODS: We generated novel mouse lines harbouring beta cell-specific deletion of either the Rela gene, encoding the canonical NF-κB transcription factor p65 (ßp65KO mice), or the Ikbkg gene, encoding the NF-κB essential modulator NEMO (ßNEMOKO mice), as well as ßA20Tg mice that carry beta cell-specific and forced transgenic expression of the NF-κB-negative regulator gene Tnfaip3, which encodes the A20 protein. Mouse studies were complemented by bioinformatics analysis of human islet chromatin accessibility (assay for transposase-accessible chromatin with sequencing [ATAC-seq]), promoter capture Hi-C (pcHi-C) and p65 binding (chromatin immunoprecipitation-sequencing [ChIP-seq]) data to investigate genome-wide control of the human beta cell metabolic programme. RESULTS: Rela deficiency resulted in complete loss of stimulus-dependent inflammatory gene upregulation, consistent with its known role in governing inflammation. However, Rela deletion also rendered mice glucose intolerant because of functional loss of insulin secretion. Glucose intolerance was intrinsic to beta cells as ßp65KO islets failed to secrete insulin ex vivo in response to a glucose challenge and were unable to restore metabolic control when transplanted into secondary chemical-induced hyperglycaemic recipients. Maintenance of glucose tolerance required Rela but was independent of classical NF-κB inflammatory cascades, as blocking NF-κB signalling in vivo by beta cell knockout of Ikbkg (NEMO), or beta cell overexpression of Tnfaip3 (A20), did not cause severe glucose intolerance. Thus, basal p65 activity has an essential and islet-intrinsic role in maintaining normal glucose homeostasis. Genome-wide bioinformatic mapping revealed the presence of p65 binding sites in the promoter regions of specific metabolic genes and in the majority of islet enhancer hubs (~70% of ~1300 hubs), which are responsible for shaping beta cell type-specific gene expression programmes. Indeed, the islet-specific metabolic genes Slc2a2, Capn9 and Pfkm identified within the large network of islet enhancer hub genes showed dysregulated expression in ßp65KO islets. CONCLUSIONS/INTERPRETATION: These data demonstrate an unappreciated role for RELA as a regulator of islet-specific transcriptional programmes necessary for the maintenance of healthy glucose metabolism. These findings have clinical implications for the use of anti-inflammatories, which influence NF-κB activation and are associated with diabetes.


Subject(s)
Glucose Intolerance , Transcription Factor RelA , Animals , Humans , Mice , Chromatin , Glucose , NF-kappa B/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
4.
Kidney Int ; 103(6): 1105-1119, 2023 06.
Article in English | MEDLINE | ID: mdl-37097268

ABSTRACT

Nuclear factor κB (NF-κB) activation is a deleterious molecular mechanism that drives acute kidney injury (AKI) and manifests in transplanted kidneys as delayed graft function. The TNFAIP3 gene encodes A20, a cytoplasmic ubiquitin ligase and a master negative regulator of the NF- κB signaling pathway. Common population-specific TNFAIP3 coding variants that reduce A20's enzyme function and increase NF- κB activation have been linked to heightened protective immunity and autoimmune disease, but have not been investigated in AKI. Here, we functionally identified a series of unique human TNFAIP3 coding variants linked to the autoimmune genome-wide association studies single nucleotide polymorphisms of F127C; namely F127C;R22Q, F127C;G281E, F127C;W448C and F127C;N449K that reduce A20's anti-inflammatory function in an NF- κB reporter assay. To investigate the impact of TNFAIP3 hypomorphic coding variants in AKI we tested a mouse Tnfaip3 hypomorph in a model of ischemia reperfusion injury (IRI). The mouse Tnfaip3 coding variant I325N increases NF- κB activation without overt inflammatory disease, providing an immune boost as I325N mice exhibit enhanced innate immunity to a bacterial challenge. Surprisingly, despite exhibiting increased intra-kidney NF- κB activation with inflammation in IRI, the kidney of I325N mice was protected. The I325N variant influenced the outcome of IRI by changing the dynamic expression of multiple cytoprotective mechanisms, particularly by increasing NF- κB-dependent anti-apoptotic factors BCL-2, BCL-XL, c-FLIP and A20, altering the active redox state of the kidney with a reduction of superoxide levels and the enzyme super oxide dismutase-1, and enhancing cellular protective mechanisms including increased Foxp3+ T cells. Thus, TNFAIP3 gene variants represent a kidney and population-specific molecular factor that can dictate the course of IRI.


Subject(s)
Acute Kidney Injury , NF-kappa B , Humans , Mice , Animals , NF-kappa B/metabolism , Transcription Factors/genetics , Ubiquitin , Genome-Wide Association Study , Ligases , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Acute Kidney Injury/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
5.
Nature ; 608(7924): 757-765, 2022 08.
Article in English | MEDLINE | ID: mdl-35948641

ABSTRACT

The notion that mobile units of nucleic acid known as transposable elements can operate as genomic controlling elements was put forward over six decades ago1,2. However, it was not until the advancement of genomic sequencing technologies that the abundance and repertoire of transposable elements were revealed, and they are now known to constitute up to two-thirds of mammalian genomes3,4. The presence of DNA regulatory regions including promoters, enhancers and transcription-factor-binding sites within transposable elements5-8 has led to the hypothesis that transposable elements have been co-opted to regulate mammalian gene expression and cell phenotype8-14. Mammalian transposable elements include recent acquisitions and ancient transposable elements that have been maintained in the genome over evolutionary time. The presence of ancient conserved transposable elements correlates positively with the likelihood of a regulatory function, but functional validation remains an essential step to identify transposable element insertions that have a positive effect on fitness. Here we show that CRISPR-Cas9-mediated deletion of a transposable element-namely the LINE-1 retrotransposon Lx9c11-in mice results in an exaggerated and lethal immune response to virus infection. Lx9c11 is critical for the neogenesis of a non-coding RNA (Lx9c11-RegoS) that regulates genes of the Schlafen family, reduces the hyperinflammatory phenotype and rescues lethality in virus-infected Lx9c11-/- mice. These findings provide evidence that a transposable element can control the immune system to favour host survival during virus infection.


Subject(s)
DNA Transposable Elements , Host Microbial Interactions , Immunity , Retroelements , Virus Diseases , Animals , CRISPR-Cas Systems/genetics , DNA Transposable Elements/genetics , DNA Transposable Elements/immunology , Evolution, Molecular , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Immunity/genetics , Mice , RNA, Untranslated/genetics , Regulatory Sequences, Nucleic Acid/genetics , Retroelements/genetics , Retroelements/immunology , Virus Diseases/genetics , Virus Diseases/immunology
6.
Bio Protoc ; 12(6): e4354, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35434196

ABSTRACT

The human immunodeficiency virus (HIV)-1 viral inhibition assay (VIA) measures CD8+ T cell-mediated inhibition of HIV replication in CD4+ T cells and is increasingly used for clinical testing of HIV vaccines and immunotherapies. Different VIAs that differ in length of CD8:CD4 T cell culture periods (6-13 days), purity of CD4 cultures [isolated CD4+ T cells or CD8+ depleted peripheral blood mononuclear cells (PBMCs)], HIV strains (laboratory strains, isolates, reporter viruses) and read-outs of virus inhibition (p24 ELISA, intracellular measurement of p24, luciferase reporter expression, and viral gag RNA) have been reported. Here, we describe multiple modifications to a 7-day VIA protocol, the most impactful being the introduction of independent replicate cultures for both HIV infected-CD4 (HIV-CD4) and HIV-CD4:CD8 T cell cultures. Virus inhibition was quantified using a ratio of weighted averages of p24+ cells in replicate cultures and the corresponding 95% confidence intervals. We identify methodological and analysis changes that could be incorporated into other protocols to improve assay reproducibility. We found that in people living with HIV (PLWH) on antiretroviral therapy (ART), CD8 T cell virus inhibition was largely stable over time, supporting the use of this assay and/or analysis methods to examine therapeutic interventions. Graphic abstract.

7.
Front Immunol ; 13: 811525, 2022.
Article in English | MEDLINE | ID: mdl-35464428

ABSTRACT

Women with autoimmune and inflammatory aetiologies can exhibit reduced fecundity. TNFAIP3 is a master negative regulator of inflammation, and has been linked to many inflammatory conditions by genome wide associations studies, however its role in fertility remains unknown. Here we show that mice harbouring a mild Tnfaip3 reduction-of-function coding variant (Tnfaip3I325N) that reduces the threshold for inflammatory NF-κB activation, exhibit reduced fecundity. Sub-fertility in Tnfaip3I325N mice is associated with irregular estrous cycling, low numbers of ovarian secondary follicles, impaired mammary gland development and insulin resistance. These pathological features are associated with infertility in human subjects. Transplantation of Tnfaip3I325N ovaries, mammary glands or pancreatic islets into wild-type recipients rescued estrous cycling, mammary branching and hyperinsulinemia respectively, pointing towards a cell-extrinsic hormonal mechanism. Examination of hypothalamic brain sections revealed increased levels of microglial activation with reduced levels of luteinizing hormone. TNFAIP3 coding variants may offer one contributing mechanism for the cause of sub-fertility observed across otherwise healthy populations as well as for the wide variety of auto-inflammatory conditions to which TNFAIP3 is associated. Further, TNFAIP3 represents a molecular mechanism that links heightened immunity with neuronal inflammatory homeostasis. These data also highlight that tuning-up immunity with TNFAIP3 comes with the potentially evolutionary significant trade-off of reduced fertility.


Subject(s)
Infertility, Female , Animals , Female , Gene Expression Regulation , Humans , Infertility, Female/genetics , Inflammation/genetics , Mice , Signal Transduction , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
9.
Front Immunol ; 12: 666991, 2021.
Article in English | MEDLINE | ID: mdl-34276657

ABSTRACT

The HIV-1 viral inhibition assay (VIA) measures CD8 T cell-mediated inhibition of HIV replication in CD4 T cells and is increasingly used for clinical testing of HIV vaccines and immunotherapies. The VIA has multiple sources of variability arising from in vitro HIV infection and co-culture of two T cell populations. Here, we describe multiple modifications to a 7-day VIA protocol, the most impactful being the introduction of independent replicate cultures for both HIV infected-CD4 (HIV-CD4) and HIV-CD4:CD8 T cell cultures. Virus inhibition was quantified using a ratio of weighted averages of p24+ cells in replicate cultures and the corresponding 95% confidence interval. An Excel template is provided to facilitate calculations. Virus inhibition was higher in people living with HIV suppressed on antiretroviral therapy (n=14, mean: 40.0%, median: 43.8%, range: 8.2 to 73.3%; p < 0.0001, two-tailed, exact Mann-Whitney test) compared to HIV-seronegative donors (n = 21, mean: -13.7%, median: -14.4%, range: -49.9 to 20.9%) and was stable over time (n = 6, mean %COV 9.4%, range 0.9 to 17.3%). Cross-sectional data were used to define 8% inhibition as the threshold to confidently detect specific CD8 T cell activity and determine the minimum number of culture replicates and p24+ cells needed to have 90% statistical power to detect this threshold. Last, we note that, in HIV seronegative donors, the addition of CD8 T cells to HIV infected CD4 T cells consistently increased HIV replication, though the level of increase varied markedly between donors. This co-culture effect may contribute to the weak correlations observed between CD8 T cell VIA and other measures of HIV-specific CD8 T cell function.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV Seropositivity/immunology , HIV-1/immunology , Host Microbial Interactions/immunology , Virus Replication/immunology , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , Case-Control Studies , Cells, Cultured , Coculture Techniques , Cross-Sectional Studies , HIV Core Protein p24/immunology , HIV Seropositivity/blood , HIV Seropositivity/drug therapy , HIV Seropositivity/virology , Humans , Treatment Outcome
10.
Sci Rep ; 10(1): 19085, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154446

ABSTRACT

Germline loss-of-function variation in TNFAIP3, encoding A20, has been implicated in a wide variety of autoinflammatory and autoimmune conditions, with acquired somatic missense mutations linked to cancer progression. Furthermore, human sequence data reveals that the A20 locus contains ~ 400 non-synonymous coding variants, which are largely uncharacterised. The growing number of A20 coding variants with unknown function, but potential clinical impact, poses a challenge to traditional mouse-based approaches. Here we report the development of a novel functional genomics approach that utilizes a new A20-deficient zebrafish (Danio rerio) model to investigate the impact of TNFAIP3 genetic variants in vivo. A20-deficient zebrafish are hyper-responsive to microbial immune activation and exhibit spontaneous early lethality. Ectopic addition of human A20 rescued A20-null zebrafish from lethality, while missense mutations at two conserved A20 residues, S381A and C243Y, reversed this protective effect. Ser381 represents a phosphorylation site important for enhancing A20 activity that is abrogated by its mutation to alanine, or by a causal C243Y mutation that triggers human autoimmune disease. These data reveal an evolutionarily conserved role for TNFAIP3 in limiting inflammation in the vertebrate linage and show how this function is controlled by phosphorylation. They also demonstrate how a zebrafish functional genomics pipeline can be utilized to investigate the in vivo significance of medically relevant human TNFAIP3 gene variants.


Subject(s)
Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/physiology , Zebrafish Proteins/genetics , Zebrafish Proteins/physiology , Zebrafish/genetics , Amino Acid Substitution , Animals , Animals, Genetically Modified , Autoimmune Diseases/etiology , Autoimmune Diseases/genetics , Conserved Sequence , Evolution, Molecular , Genetic Variation , Humans , Inflammation/etiology , Inflammation/genetics , Macrophages/immunology , Macrophages/metabolism , Models, Animal , Models, Genetic , Mutation, Missense , NF-kappa B/metabolism , Phosphorylation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/deficiency , Zebrafish/physiology , Zebrafish Proteins/deficiency
11.
Elife ; 92020 10 06.
Article in English | MEDLINE | ID: mdl-33021198

ABSTRACT

HIV-1-specific CD8+ T cells are an important component of HIV-1 curative strategies. Viral variants in the HIV-1 reservoir may limit the capacity of T cells to detect and clear virus-infected cells. We investigated the patterns of T cell escape variants in the replication-competent reservoir of 25 persons living with HIV-1 (PLWH) durably suppressed on antiretroviral therapy (ART). We identified all reactive T cell epitopes in the HIV-1 proteome for each participant and sequenced HIV-1 outgrowth viruses from resting CD4+ T cells. All non-synonymous mutations in reactive T cell epitopes were tested for their effect on the size of the T cell response, with a≥50% loss defined as an escape mutation. The majority (68%) of T cell epitopes harbored no detectable escape mutations. These findings suggest that circulating T cells in PLWH on ART could contribute to control of rebound and could be targeted for boosting in curative strategies.


Subject(s)
Anti-HIV Agents/pharmacology , CD4-Positive T-Lymphocytes/virology , HIV Infections/immunology , Virus Latency/drug effects , Adult , Aged , Cohort Studies , Epitopes/immunology , Female , HIV-1/drug effects , HIV-1/physiology , Humans , Male , Middle Aged , Mutation , Phylogeny , Viral Load/drug effects , Virus Replication/drug effects
12.
Sci Rep ; 10(1): 5134, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198428

ABSTRACT

Approaches to deplete persistent HIV infection are needed. We investigated the combined impact of the latency reversing agent vorinostat (VOR) and AGS-004, an autologous dendritic cell immunotherapeutic, on the HIV reservoir. HIV+, stably treated participants in whom resting CD4+ T cell-associated HIV RNA (rca-RNA) increased after VOR exposure ex vivo and in vivo received 4 doses of AGS-004 every 3 weeks, followed by VOR every 72 hours for 30 days, and then the cycle repeated. Change in VOR-responsive host gene expression, HIV-specific T cell responses, low-level HIV viremia, rca-RNA, and the frequency of resting CD4+ T-cell infection (RCI) was measured at baseline and after each cycle. No serious treatment-related adverse events were observed among five participants. As predicted, VOR-responsive host genes responded uniformly to VOR dosing. Following cycles of AGS-004 and VOR, rca-RNA decreased significantly in only two participants, with a significant decrease in SCA observed in one of these participants. However, unlike other cohorts dosed with AGS-004, no uniform increase in HIV-specific immune responses following vaccination was observed. Finally, no reproducible decline of RCI, defined as a decrease of >50%, was observed. AGS-004 and VOR were safe and well-tolerated, but no substantial impact on RCI was measured. In contrast to previous clinical data, AGS-004 did not induce HIV-specific immune responses greater than those measured at baseline. More efficacious antiviral immune interventions, perhaps paired with more effective latency reversal, must be developed to clear persistent HIV infection.


Subject(s)
Dendritic Cells/transplantation , HIV Infections/therapy , HIV-1/drug effects , Histone Deacetylase Inhibitors/therapeutic use , Immunotherapy, Adoptive/methods , Vorinostat/therapeutic use , Adult , CD4-Positive T-Lymphocytes/immunology , Humans , Immunologic Memory/immunology , Male , Middle Aged , T-Lymphocytes, Cytotoxic/immunology , Translational Research, Biomedical , Treatment Outcome , Vaccination
13.
Nat Immunol ; 20(10): 1299-1310, 2019 10.
Article in English | MEDLINE | ID: mdl-31534238

ABSTRACT

Resisting and tolerating microbes are alternative strategies to survive infection, but little is known about the evolutionary mechanisms controlling this balance. Here genomic analyses of anatomically modern humans, extinct Denisovan hominins and mice revealed a TNFAIP3 allelic series with alterations in the encoded immune response inhibitor A20. Each TNFAIP3 allele encoded substitutions at non-catalytic residues of the ubiquitin protease OTU domain that diminished IκB kinase-dependent phosphorylation and activation of A20. Two TNFAIP3 alleles encoding A20 proteins with partial phosphorylation deficits seemed to be beneficial by increasing immunity without causing spontaneous inflammatory disease: A20 T108A;I207L, originating in Denisovans and introgressed in modern humans throughout Oceania, and A20 I325N, from an N-ethyl-N-nitrosourea (ENU)-mutagenized mouse strain. By contrast, a rare human TNFAIP3 allele encoding an A20 protein with 95% loss of phosphorylation, C243Y, caused spontaneous inflammatory disease in humans and mice. Analysis of the partial-phosphorylation A20 I325N allele in mice revealed diminished tolerance of bacterial lipopolysaccharide and poxvirus inoculation as tradeoffs for enhanced immunity.


Subject(s)
Poxviridae Infections/immunology , Poxviridae/physiology , Protein Domains/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Alleles , Animals , Extinction, Biological , Humans , Immunity , Inflammation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation, Missense/genetics , Phosphorylation
14.
Mol Ther Methods Clin Dev ; 15: 9-17, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31534983

ABSTRACT

HIV infection induces a robust T cell response that is sustained by high viremia, but falls following the onset of antiretroviral therapy (ART). Relatively little has been reported on the subsequent stability of the HIV-specific T cell response in individuals on durable therapy. Such data are critical for powering clinical trials testing T cell-based immunotherapies. In a cross-sectional study, HIV-specific T cell responses were detectable by ex vivo interferon (IFN)-γ ELISpot (average ∼1,100 spot-forming units [SFUs]/106 peripheral blood mononuclear cells) in persons living with HIV (PLWH; n = 34), despite median durable ART suppression of 5.0 years. No substantial association was detected between the summed HIV-specific T cell response and the size of the replication-competent HIV reservoir. T cell responses were next measured in participants sampled weekly, monthly, or yearly. HIV-specific T cell responses were highly stable over the time periods examined; within-individual variation ranged from 16% coefficient of variation (CV) for weekly to 27% CV for yearly sampling. These data were used to generate power calculations for future immunotherapy studies. The stability of the HIV-specific T cell response in suppressed PLWH will enable powered studies of small sizes (e.g., n = 6-12), facilitating rapid and iterative testing for T cell-based immunotherapies against HIV.

15.
Proc Natl Acad Sci U S A ; 116(27): 13508-13516, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31196957

ABSTRACT

Injection of Interleukin-2 (IL-2) complexed with a particular anti-IL-2 monoclonal antibody (mab) JES6-1 has been shown to selectively expand CD4+Foxp3+ T regulatory T cells (Tregs) in vivo. Although the potency of this approach with regard to transplantation has already been proven in an islet transplantation model, skin graft survival could not be prolonged. Since the latter is relevant to human allograft survival, we sought to improve the efficiency of IL-2 complex (cplx) treatment for skin allograft survival in a stringent murine skin graft model. Here, we show that combining low doses of IL-2 cplxs with rapamycin and blockade of the inflammatory cytokine IL-6 leads to long-term (>75 d) survival of major histocompatibility complex-different skin allografts without the need for immunosuppression. Allograft survival was critically dependent on CD25+FoxP3+ Tregs and was not accompanied by impaired responsiveness toward donor alloantigens in vitro after IL-2 cplx treatment was stopped. Furthermore, second donor-type skin grafts were rejected and provoked rejection of the primary graft, suggesting that operational tolerance is not systemic but restricted to the graft. These findings plus the lack of donor-specific antibody formation imply that prolonged graft survival was largely a reflection of immunological ignorance. The results may represent a potentially clinically translatable strategy for the development of protocols for tolerance induction.


Subject(s)
Graft Rejection/prevention & control , Graft Survival , Skin Transplantation , T-Lymphocytes, Regulatory/immunology , Allografts , Animals , Antibodies, Monoclonal/immunology , Female , Flow Cytometry , Graft Survival/immunology , Immunosuppressive Agents/therapeutic use , Interleukin-2/immunology , Interleukin-6/antagonists & inhibitors , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Sirolimus/therapeutic use
16.
Cell Rep ; 27(8): 2370-2384.e6, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31116982

ABSTRACT

The development of autoimmune disease type 1 diabetes (T1D) is determined by both genetic background and environmental factors. Environmental triggers include RNA viruses, particularly coxsackievirus (CV), but how they induce T1D is not understood. Here, we demonstrate that deletion of the transcription factor hypoxia-inducible factor-1α (HIF-1α) from ß cells increases the susceptibility of non-obese diabetic (NOD) mice to environmentally triggered T1D from coxsackieviruses and the ß cell toxin streptozotocin. Similarly, knockdown of HIF-1α in human islets leads to a poorer response to coxsackievirus infection. Studies in coxsackievirus-infected islets demonstrate that lack of HIF-1α leads to impaired viral clearance, increased viral load, inflammation, pancreatitis, and loss of ß cell mass. These findings show an important role for ß cells and, specifically, lack of ß cell HIF-1α in the development of T1D. These data suggest new strategies for the prevention of T1D.


Subject(s)
Diabetes Mellitus, Type 1/prevention & control , Hypoxia-Inducible Factor 1, alpha Subunit/therapeutic use , Animals , Apoptosis , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/pharmacology , Male , Mice
17.
Front Immunol ; 10: 291, 2019.
Article in English | MEDLINE | ID: mdl-30863403

ABSTRACT

Antiretroviral therapy (ART) has transformed HIV from a fatal disease to a chronic condition. In recent years there has been considerable interest in strategies to enable HIV-infected individuals to cease ART without viral rebound, either by purging all cells infected harboring replication-competent virus (HIV eradication), or by boosting immune responses to allow durable suppression of virus without rebound (HIV remission). Both of these approaches may need to harness HIV-specific CD8+ T cells to eliminate infected cells and/or prevent viral spread. In untreated infection, both HIV-specific and total CD8+ T cells are dysfunctional. Here, we review our current understanding of both global and HIV-specific CD8+ T cell immunity in HIV-infected individuals with durably suppressed viral load under ART, and its implications for HIV cure, eradication or remission. Overall, the literature indicates significant normalization of global T cell parameters, including CD4/8 ratio, activation status, and telomere length. Global characteristics of CD8+ T cells from HIV+ART+ individuals align more closely with those of HIV-seronegative individuals than of viremic HIV-infected individuals. However, markers of senescence remain elevated, leading to the hypothesis that immune aging is accelerated in HIV-infected individuals on ART. This phenomenon could have implications for attempts to prime de novo, or boost existing HIV-specific CD8+ T cell responses. A major challenge for both HIV cure and remission strategies is to elicit HIV-specific CD8+ T cell responses superior to that elicited by natural infection in terms of response kinetics, magnitude, breadth, viral suppressive capacity, and tissue localization. Addressing these issues will be critical to the success of HIV cure and remission attempts.


Subject(s)
Anti-Retroviral Agents/therapeutic use , CD8-Positive T-Lymphocytes/immunology , HIV Infections/drug therapy , HIV-1/drug effects , Anti-Retroviral Agents/administration & dosage , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , HIV-1/physiology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Viral Load/drug effects , Viral Load/immunology , Viremia/drug therapy , Viremia/immunology , Viremia/virology , Virus Activation/drug effects , Virus Activation/immunology , Virus Replication/drug effects , Virus Replication/immunology
18.
Front Immunol ; 9: 2899, 2018.
Article in English | MEDLINE | ID: mdl-30662436

ABSTRACT

CD4+ T helper (Th) cells that express the gut homing chemokine receptor CCR9 are increased in the peripheral blood of patients with inflammatory bowel disease and Sjögren's syndrome and in the inflamed lesions of autoimmune diseases that affect the accessory organs of the digestive system. However, despite the important role of the GIT in both immunity and autoimmunity, the nature of CCR9-expressing cells in GIT lymphoid organs and their role in chronic inflammatory diseases remains unknown. In this study, we analyzed the characteristics of CCR9+ Th and T follicular helper (Tfh) cells in GIT associated lymphoid tissues in health, chronic inflammation and autoimmunity. Our findings reveal an association between the transcriptome and phenotype of CCR9+ Th in the pancreas and CCR9+ Tfh cells from GIT-associated lymphoid tissues. GIT CCR9+ Tfh cells exhibited characteristics, including a Th17-like transcriptome and production of effector cytokines, which indicated a microenvironment-specific signature. Both CCR9+ Tfh cells and CCR9+ Th cells from GIT-associated lymphoid tissues migrated to the pancreas. The expression of CCR9 was important for migration of both subsets to the pancreas, but Tfh cells that accumulated in the pancreas had downmodulated expression of CXCR5. Taken together, the findings provide evidence that CCR9+ Tfh cells and Th cells from the GIT exhibit plasticity and can accumulate in distal accessory organs of the digestive system where they may participate in autoimmunity.


Subject(s)
Inflammation/immunology , Lymph Nodes/immunology , Receptors, CCR/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Autoantigens/immunology , Autoimmunity , Cell Movement/immunology , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Female , Gastrointestinal Tract/cytology , Gastrointestinal Tract/immunology , Humans , Inflammation/genetics , Inflammation/pathology , Interleukin-2/genetics , Interleukin-2/metabolism , Lymph Nodes/cytology , Lymph Nodes/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Pancreas/cytology , Pancreas/immunology , Pancreas/pathology , Receptors, CCR/immunology , Receptors, CXCR5/metabolism , Spleen/cytology , Spleen/immunology , Spleen/pathology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
19.
Cell Rep ; 21(6): 1624-1638, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29117566

ABSTRACT

The archetypal T cell-dependent antigen is sheep red blood cells (SRBCs), which have defined much of what we know about humoral immunity. Early studies using solubilized or sonicated SRBCs argued that the intact structure of SRBCs was important for optimal antibody responses. However, the reason for the requirement of intact SRBCs for the response to polyvalent protein antigen remained unknown. Here, we report that the immune response to SRBCs is driven by cytosolic recognition of SRBC RNA through the RIG-I-like receptor (RLR)-mitochondrial anti-viral signaling adaptor (MAVS) pathway. Following the uptake of SRBCs by antigen-presenting cells, the MAVS signaling complex governs the differentiation of both T follicular cells and antibody-producing B cells. Importantly, the involvement of the RLR-MAVS pathway precedes that of endosomal Toll-like receptor pathways, yet both are required for optimal effect.


Subject(s)
Erythrocytes/immunology , RNA/immunology , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cytokines/blood , Cytokines/metabolism , DEAD Box Protein 58/metabolism , Down-Regulation/drug effects , Humans , Immunity, Humoral/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Poly I-C/pharmacology , Sheep , Signal Transduction , Spleen/cytology , Spleen/drug effects , Spleen/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...