Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
Microorganisms ; 12(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38930430

ABSTRACT

Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high-TB-burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI in PLHIV. We characterised the stool microbiota of PLHIV with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST-negative) LTBI (n = 25 per group). The 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet-Multinomial Mixtures, DESeq2, and PICRUSt2. No α- or ß-diversity differences occurred by LTBI status; however, LTBI-positive people were Faecalibacterium-, Blautia-, Gemmiger-, and Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, and Streptococcus-depleted. Inferred metagenome data showed that LTBI-negative-enriched pathways included several metabolite degradation pathways. Stool from LTBI-positive people demonstrated differential taxa abundance based on a quantitative response to antigen stimulation. In LTBI-positive people, older people had different ß-diversities than younger people, whereas in LTBI-negative people, no differences occurred across age groups. Amongst female PLHIV, those with LTBI were, vs. those without LTBI, Faecalibacterium-, Blautia-, Gemmiger-, and Bacteriodes-enriched, which are producers of short-chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.

2.
PLoS One ; 19(6): e0303938, 2024.
Article in English | MEDLINE | ID: mdl-38843147

ABSTRACT

Oxford Nanopore Technologies (ONT) sequencing is a promising technology. We assessed the performance of the new ONT R10 flowcells and V14 rapid sequencing chemistry for Mtb whole genome sequencing of Mycobacterium tuberculosis (Mtb) DNA extracted from clinical primary liquid cultures (CPLCs). Using the recommended protocols for MinION Mk1C, R10.4.1 MinION flowcells, and the ONT Rapid Sequencing Kit V14 on six CPLC samples, we obtained a pooled library yield of 10.9 ng/µl, generated 1.94 Gb of sequenced bases and 214k reads after 48h in a first sequencing run. Only half (49%) of all generated reads met the Phred Quality score threshold (>8). To assess if the low data output and sequence quality were due to impurities present in DNA extracted directly from CPLCs, we added a pre-library preparation bead-clean-up step and included purified DNA obtained from an Mtb subculture as a control sample in a second sequencing run. The library yield for DNA extracted from four CPLCs and one Mtb subculture (control) was similar (10.0 ng/µl), 2.38 Gb of bases and 822k reads were produced. The quality was slightly better with 66% of the produced reads having a Phred Quality >8. A third run of DNA from six CPLCs with bead clean-up pre-processing produced a low library yield (±1 Gb of bases, 166k reads) of low quality (51% of reads with a Phred Quality score >8). A median depth of coverage above 10× was only achieved for five of 17 (29%) sequenced libraries. Compared to Illumina WGS of the same samples, accurate lineage predictions and full drug resistance profiles from the generated ONT data could not be determined by TBProfiler. Further optimization of the V14 ONT rapid sequencing chemistry and library preparation protocol is needed for clinical Mtb WGS applications.


Subject(s)
DNA, Bacterial , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Humans , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Nanopores , Nanopore Sequencing/methods , Genome, Bacterial , Whole Genome Sequencing/methods , Tuberculosis/microbiology , Tuberculosis/diagnosis , Gene Library
3.
Ann Am Thorac Soc ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935769

ABSTRACT

BACKGROUND: Isoniazid-resistant tuberculosis (Hr-TB) is often overlooked in diagnostic algorithms due to reliance on first-line molecular assays testing only for rifampicin resistance. OBJECTIVES: To determine the prevalence, outcomes and molecular mechanisms associated with Hr-TB in the Eastern Cape, South Africa. METHODS: Between April 2016 and October 2017, sputum samples were collected from patients with rifampin-susceptible TB at baseline and at weeks 7 and 23 of drug-susceptible TB treatment. We performed isoniazid phenotypic and genotypic drug susceptibility testing, FluorotypeMTBDR, Sanger sequencing, targeted next-generation sequencing (tNGS), and whole genome sequencing. RESULTS: We analysed baseline isolates from 766 patients with rifampin-susceptible TB. Of 89 patients (11.7%) found to have Hr-TB, 39 (44%) had canonical katG or inhA promoter mutations; 35 (39%) had non-canonical katG mutations (including 5 with underlying large deletions); 4 (5%) had mutations in other candidate genes associated with isoniazid resistance. For 11 (12.4%), no cause of resistance was found. CONCLUSIONS: Among patients with rifampin-susceptible TB diagnosed using first-line molecular TB assays, there is a high prevalence of Hr-TB. Phenotypic DST remains the gold standard. To improve performance of genetic-based phenotyping tests, all isoniazid resistance associated regions should be included, and such tests should have the ability to identify underlying mutations.

4.
Int J Infect Dis ; 145: 107081, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38701914

ABSTRACT

OBJECTIVES: To evaluate diagnostic yield and feasibility of integrating testing for TB and COVID-19 using molecular and radiological screening tools during community-based active case-finding (ACF). METHODS: Community-based participants with presumed TB and/or COVID-19 were recruited using a mobile clinic. Participants underwent simultaneous point-of-care (POC) testing for TB (sputum; Xpert Ultra) and COVID-19 (nasopharyngeal swabs; Xpert SARS-CoV-2). Sputum culture and SARS-CoV-2 RT-PCR served as reference standards. Participants underwent ultra-portable POC chest radiography with computer-aided detection (CAD). TB infectiousness was evaluated using smear microscopy, cough aerosol sampling studies (CASS), and chest radiographic cavity detection. Feasibility of POC testing was evaluated via user-appraisals. RESULTS: Six hundred and one participants were enrolled, with 144/601 (24.0%) reporting symptoms suggestive of TB and/or COVID-19. 16/144 (11.1%) participants tested positive for TB, while 10/144 (6.9%) tested positive for COVID-19 (2/144 [1.4%] had concurrent TB/COVID-19). Seven (7/16 [43.8%]) individuals with TB were probably infectious. Test-specific sensitivity and specificity (95% CI) were: Xpert Ultra 75.0% (42.8-94.5) and 96.9% (92.4-99.2); Xpert SARS-CoV-2 66.7% (22.3-95.7) and 97.1% (92.7-99.2). Area under the curve (AUC) for CAD4TB was 0.90 (0.82-0.97). User appraisals indicated POC Xpert to have 'good' user-friendliness. CONCLUSIONS: Integrating TB/COVID-19 screening during community-based ACF using POC molecular and radiological tools is feasible, has a high diagnostic yield, and can identity probably infectious persons.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Male , Female , Adult , Middle Aged , Mass Screening/methods , Point-of-Care Testing , Sputum/microbiology , Sputum/virology , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/diagnostic imaging , Africa, Southern/epidemiology , Sensitivity and Specificity , Feasibility Studies , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/diagnostic imaging , Tuberculosis, Pulmonary/epidemiology
5.
medRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712063

ABSTRACT

Background: The microbiome likely plays a role in tuberculosis (TB) pathogenesis. We evaluated the site-of-disease microbiome and predicted metagenome in people with presumptive tuberculous pericarditis, a major cause of mortality, and explored for the first time, the interaction between its association with C-reactive protein (CRP), a potential diagnostic biomarker and the site-of-disease microbiome in extrapulmonary TB. Methods: People with effusions requiring diagnostic pericardiocentesis (n=139) provided background sampling controls and pericardial fluid (PF) for 16S rRNA gene sequencing analysed using QIIME2 and PICRUSt2. Blood was collected to measure CRP. Results: PF from people with definite (dTB, n=91), probable (pTB, n=25), and non- (nTB, n=23) tuberculous pericarditis differed in ß-diversity. dTBs were, vs. nTBs, Mycobacterium-, Lacticigenium-, and Kocuria- enriched. Within dTBs, HIV-positives were Mycobacterium-, Bifidobacterium- , Methylobacterium- , and Leptothrix -enriched vs. HIV-negatives and HIV-positive dTBs on ART were Mycobacterium - and Bifidobacterium -depleted vs. those not on ART. Compared to nTBs, dTBs exhibited short-chain fatty acid (SCFA) and mycobacterial metabolism microbial pathway enrichment. People with additional non-pericardial involvement had differentially PF taxa (e.g., Mycobacterium -enrichment and Streptococcus -depletion associated with pulmonary infiltrates). Mycobacterium reads were in 34% (31/91), 8% (2/25) and 17% (4/23) of dTBs, pTBs, and nTBs, respectively. ß-diversity differed between patients with CRP above vs. below the median value ( Pseudomonas -depleted). There was no correlation between enriched taxa in dTBs and CRP. Conclusions: PF is compositionally distinct based on TB status, HIV (and ART) status and dTBs are enriched in SCFA-associated taxa. The clinical significance of these findings, including mycobacterial reads in nTBs and pTBs, requires evaluation.

6.
Res Sq ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38645218

ABSTRACT

Background: Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high TB burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI, including in PLHIV. Method: Within a parent study that recruited adult females with HIV from Cape Town, South Africa into predefined age categories (18-25, 35-60 years), we characterised the stool microbiota of those with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST- negative) LTBI (n=25 per group). 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet Multinomial Mixtures, DESeq2 and PICRUSt2. Results: No α- or ß-diversity differences occurred by LTBI status; however, LTBI-positives were Faecalibacterium-, Blautia-, Gemmiger-, Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, Streptococcus-depleted. Inferred metagenome data showed LTBI-negative-enriched pathways included several involved in methylglyoxal degradation, L-arginine, putrescine, 4-aminobutanoate degradation and L-arginine and ornithine degradation. Stool from LTBI-positives demonstrated differential taxa abundance based on a quantitative response to antigen stimulation (Acidaminococcus-enrichment and Megamonas-, Alistipes-, and Paraprevotella-depletion associated with higher IGRA or TST responses, respectively). In LTBI-positives, older people had different ß-diversities than younger people whereas, in LTBI-negatives, no differences occurred across age groups. Conclusion: Amongst female PLHIV, those with LTBI had, vs. those without LTBI, Faecalibacterium, Blautia, Gemmiger, Bacteriodes-enriched, which are producers of short chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.

7.
bioRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38585972

ABSTRACT

Pan-genome analysis is a fundamental tool for studying bacterial genome evolution; however, the variety of methods used to define and measure the pan-genome poses challenges to the interpretation and reliability of results. To quantify sources of bias and error related to common pan-genome analysis approaches, we evaluated different approaches applied to curated collection of 151 Mycobacterium tuberculosis ( Mtb ) isolates. Mtb is characterized by its clonal evolution, absence of horizontal gene transfer, and limited accessory genome, making it an ideal test case for this study. Using a state-of-the-art graph-genome approach, we found that a majority of the structural variation observed in Mtb originates from rearrangement, deletion, and duplication of redundant nucleotide sequences. In contrast, we found that pan-genome analyses that focus on comparison of coding sequences (at the amino acid level) can yield surprisingly variable results, driven by differences in assembly quality and the softwares used. Upon closer inspection, we found that coding sequence annotation discrepancies were a major contributor to inflated Mtb accessory genome estimates. To address this, we developed panqc, a software that detects annotation discrepancies and collapses nucleotide redundancy in pan-genome estimates. When applied to Mtb and E. coli pan-genomes, panqc exposed distinct biases influenced by the genomic diversity of the population studied. Our findings underscore the need for careful methodological selection and quality control to accurately map the evolutionary dynamics of a bacterial species.

8.
Sci Rep ; 14(1): 9931, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689002

ABSTRACT

Implementation of whole genome sequencing (WGS) for patient care is hindered by limited Mycobacterium tuberculosis (Mtb) in clinical specimens and slow Mtb growth. We evaluated droplet multiple displacement amplification (dMDA) for amplification of minute amounts of Mtb DNA to enable WGS as an alternative to other Mtb enrichment methods. Purified genomic Mtb-DNA (0.1, 0.5, 1, and 5 pg) was encapsulated and amplified using the Samplix Xdrop-instrument and sequenced alongside a control sample using standard Illumina protocols followed by MAGMA-analysis. The control and 5 pg input dMDA samples underwent nanopore sequencing followed by Nanoseq and TB-profiler analysis. dMDA generated 105-2400 ng DNA from the 0.1-5 pg input DNA, respectively. Followed by Illumina WGS, dMDA raised mean sequencing depth from 7 × for 0.1 pg input DNA to ≥ 60 × for 5 pg input and the control sample. Bioinformatic analysis revealed a high number of false positive and false negative variants when amplifying ≤ 0.5 pg input DNA. Nanopore sequencing of the 5 pg dMDA sample presented excellent coverage depth, breadth, and accurate strain characterization, albeit elevated false positive and false negative variants compared to Illumina-sequenced dMDA sample with identical Mtb DNA input. dMDA coupled with Illumina WGS for samples with ≥ 5 pg purified Mtb DNA, equating to approximately 1000 copies of the Mtb genome, offers precision for drug resistance, phylogeny, and transmission insights.


Subject(s)
DNA, Bacterial , Genome, Bacterial , Mycobacterium tuberculosis , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Whole Genome Sequencing/methods , Humans , Nucleic Acid Amplification Techniques/methods , Nanopore Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Tuberculosis/microbiology , Tuberculosis/diagnosis
9.
Res Sq ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38659922

ABSTRACT

Background: Tuberculosis (TB), a major cause of disease and antimicrobial resistance, is spread via aerosols. Aerosols have diagnostic potential and airborne-microbes other than Mycobacterium tuberculosis complex (MTBC) may influence transmission. We evaluated whether PneumoniaCheck (PMC), a commercial aerosol collection device, captures MTBC and the aeromicrobiome of people with TB. Methods: PMC was done in sputum culture-positive people (≥30 forced coughs each, n=16) pre-treatment and PMC air reservoir (bag, corresponding to upper airways) and filter (lower airways) washes underwent Xpert MTB/RIF Ultra (Ultra) and 16S rRNA gene sequencing (sequencing also done on sputum). In a subset (n=6), PMC microbiota (bag, filter) was compared to oral washes and bronchoalveolar lavage fluid (BALF). Findings: 54% (7/13) bags and 46% (6/14) filters were Ultra-positive. Sequencing read counts and microbial diversity did not differ across bags, filters, and sputum. However, microbial composition in bags (Sphingobium-, Corynebacterium-, Novosphingobium-enriched) and filters (Mycobacterium-, Sphingobium-, Corynebacterium-enriched) each differed vs. sputum. Furthermore, sequencing only detected Mycobacterium in bags and filters but not sputum. In the subset, bag and filter microbial diversity did not differ vs. oral washes or BALF but microbial composition differed. Bags vs. BALF were Sphingobium-enriched and Mycobacterium-, Streptococcus-, and Anaerosinus-depleted (Anaerosinus also depleted in filters vs. BALF). Compared to BALF, none of the aerosol-enriched taxa were enriched in oral washes or sputum. Interpretation: PMC captures aerosols with Ultra-detectable MTBC and MTBC is more detectable in aerosols than sputum by sequencing. The aeromicrobiome is distinct from sputum, oral washes and BALF and contains differentially-enriched lower respiratory tract microbes.

10.
Lancet Glob Health ; 12(5): e793-e803, 2024 May.
Article in English | MEDLINE | ID: mdl-38583458

ABSTRACT

BACKGROUND: Tuberculosis, a major cause of death in people living with HIV, remains challenging to diagnose. Diagnostic accuracy data are scarce for promising triage and confirmatory tests such as C-reactive protein (CRP), sputum and urine Xpert MTB/RIF Ultra (Xpert Ultra), and urine Determine TB LAM Ag (a lateral flow lipoarabinomannan [LF-LAM] test), without symptom selection. We evaluated novel triage and confirmatory tests in ambulatory people with HIV initiating antiretroviral therapy (ART). METHODS: 897 ART-initiators were recruited irrespective of symptoms and sputum induction offered. For triage (n=800), we evaluated point-of-care blood-based CRP testing, compared with the WHO-recommended four-symptom screen (W4SS). For sputum-based confirmatory testing (n=787), we evaluated Xpert Ultra versus Xpert MTB/RIF (Xpert). For urine-based confirmatory testing (n=732), we evaluated Xpert Ultra and LF-LAM. We used a sputum culture reference standard. FINDINGS: 463 (52%) of 897 participants were female. The areas under the receiver operator characteristic curves for CRP was 0·78 (95% CI 0·73-0·83) and for number of W4SS symptoms was 0·70 (0·64-0·75). CRP (≥10 mg/L) had similar sensitivity to W4SS (77% [95% CI 68-85; 80/104] vs 77% [68-85; 80/104]; p>0·99] but higher specificity (64% [61-68; 445/696] vs 48% [45-52; 334/696]; p<0·0001]; reducing unnecessary confirmatory testing by 138 (95% CI 117-160) per 1000 people and number-needed-to-test from 6·91 (95% CI 6·25-7·81) to 4·87 (4·41-5·51). Sputum samples with Xpert Ultra, which required induction in 49 (31%) of 158 of people (95% CI 24-39), had higher sensitivity than Xpert (71% [95% CI 61-80; 74/104] vs 56% [46-66; 58/104]; p<0·0001). Of the people with one or more confirmatory sputum or urine test results that were positive, the proportion detected by Xpert Ultra increased from 45% (26-64) to 66% (46-82) with induction. Programmatically done haemoglobin, triage test combinations, and urine tests showed comparatively worse results. INTERPRETATION: CRP is a more specific triage test than W4SS in those initiating ART. Sputum induction improves diagnostic yield. Sputum samples with Xpert Ultra is a more accurate confirmatory test than with Xpert. FUNDING: South African Medical Research Council, EDCTP2, US National Institutes of Health-National Institute of Allergy and Infectious Diseases.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Female , Male , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/urine , Point-of-Care Systems , C-Reactive Protein , Prospective Studies , Cross-Sectional Studies , Sensitivity and Specificity , Tuberculosis/diagnosis , Tuberculosis/drug therapy , HIV Infections/diagnosis , HIV Infections/drug therapy , Sputum
11.
One Health ; 18: 100702, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38487729

ABSTRACT

This study investigated the presence of Mycobacterium bovis (M. bovis) DNA in archived human sputum samples previously collected from residents who reside adjacent to the M. bovis-endemic Hluhluwe-iMfolozi wildlife park, South Africa (SA). Sixty-eight sputum samples were GeneXpert MTB/RIF Ultra-positive for M. tuberculosis complex (MTBC) DNA but culture negative for M. tuberculosis. Amplification and Sanger sequencing of hsp65 and rpoB genes from DNA extracted from stored heat-inactivated sputum samples confirmed the presence of detectable amounts of MTBC from 20 out of the 68 sputum samples. Region of difference PCR, spoligotyping and gyrB long-read amplicon deep sequencing identified M. bovis (n = 10) and M. tuberculosis (n = 7). Notably, M. bovis spoligotypes SB0130 and SB1474 were identified in 4 samples, with SB0130 previously identified in local cattle and wildlife and SB1474 exclusively in African buffaloes in the adjacent park. M. bovis DNA in sputum, from people living near the park, underscores zoonotic transmission potential in SA. Identification of spoligotypes specifically associated with wildlife only and spoligotypes found in livestock as well as wildlife, highlights the complexity of TB epidemiology at wildlife-livestock-human interfaces. These findings support the need for integrated surveillance and control strategies to curb potential spillover and for the consideration of human M. bovis infection in SA patients with positive Ultra results.

12.
Front Microbiol ; 15: 1349163, 2024.
Article in English | MEDLINE | ID: mdl-38419629

ABSTRACT

Animal tuberculosis, caused by Mycobacterium bovis, presents a significant threat to both livestock industries and public health. Mycobacterium bovis tests rely on detecting antigen specific immune responses, which can be influenced by exposure to non-tuberculous mycobacteria, test technique, and duration and severity of infection. Despite advancements in direct M. bovis detection, mycobacterial culture remains the primary diagnostic standard. Recent efforts have explored culture-independent PCR-based methods for identifying mycobacterial DNA in respiratory samples. This study aimed to detect M. bovis in nasal swabs from goats (Capra hircus) cohabiting with M. bovis-infected cattle in KwaZulu-Natal, South Africa. Nasal swabs were collected from 137 communal goats exposed to M. bovis-positive cattle and 20 goats from a commercial dairy herd without M. bovis history. Swabs were divided into three aliquots for analysis. The first underwent GeneXpert® MTB/RIF Ultra assay (Ultra) screening. DNA from the second underwent mycobacterial genus-specific PCR and Sanger sequencing, while the third underwent mycobacterial culture followed by PCR and sequencing. Deep sequencing identified M. bovis DNA in selected Ultra-positive swabs, confirmed by region-of-difference (RD) PCR. Despite no other evidence of M. bovis infection, viable M. bovis was cultured from three communal goat swabs, confirmed by PCR and sequencing. Deep sequencing of DNA directly from swabs identified M. bovis in the same culture-positive swabs and eight additional communal goats. No M. bovis was found in commercial dairy goats, but various NTM species were detected. This highlights the risk of M. bovis exposure or infection in goats sharing pastures with infected cattle. Rapid Ultra screening shows promise for selecting goats for further M. bovis testing. These techniques may enhance M. bovis detection in paucibacillary samples and serve as valuable research tools.

13.
Sci Rep ; 14(1): 357, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172248

ABSTRACT

Mycobacterium bovis (M. bovis) infection has been identified in black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros populations in Kruger National Park, South Africa. However, it is unknown whether M. bovis infected rhinoceros, like humans and cattle, can shed mycobacteria in respiratory secretions. Limited studies have suggested that rhinoceros with subclinical M. bovis infection may present minimal risk for transmission. However, recent advances that have improved detection of Mycobacterium tuberculosis complex (MTBC) members in paucibacillary samples warranted further investigation of rhinoceros secretions. In this pilot study, nasal swab samples from 75 rhinoceros with defined infection status based on M. bovis antigen-specific interferon gamma release assay (IGRA) results were analysed by GeneXpert MTB/RIF Ultra, BACTEC MGIT and TiKa-MGIT culture. Following culture, speciation was done using targeted PCRs followed by Sanger sequencing for mycobacterial species identification, and a region of difference (RD) 4 PCR. Using these techniques, MTBC was detected in secretions from 14/64 IGRA positive rhinoceros, with viable M. bovis having been isolated in 11 cases, but not in any IGRA negative rhinoceros (n = 11). This finding suggests the possibility that MTBC/M. bovis-infected rhinoceros may be a source of infection for other susceptible animals sharing the environment.


Subject(s)
Mycobacterium bovis , Tuberculosis , Humans , Animals , Cattle , Mycobacterium bovis/genetics , Tuberculosis/diagnosis , Tuberculosis/veterinary , Tuberculosis/microbiology , Pilot Projects , Interferon-gamma Release Tests/veterinary , Perissodactyla/microbiology
14.
Front Microbiol ; 14: 1307440, 2023.
Article in English | MEDLINE | ID: mdl-38075895

ABSTRACT

Animal tuberculosis is a significant infectious disease affecting both livestock and wildlife populations worldwide. Effective disease surveillance and characterization of Mycobacterium bovis (M. bovis) strains are essential for understanding transmission dynamics and implementing control measures. Currently, sequencing of genomic information has relied on culture-based methods, which are time-consuming, resource-demanding, and concerning in terms of biosafety. This study explores the use of culture-independent long-read whole-genome sequencing (WGS) for a better understanding of M. bovis epidemiology in African buffaloes (Syncerus caffer). By comparing two sequencing approaches, we evaluated the efficacy of Illumina WGS performed on culture extracts and culture-independent Oxford Nanopore adaptive sampling (NAS). Our objective was to assess the potential of NAS to detect genomic variants without sample culture. In addition, culture-independent amplicon sequencing, targeting mycobacterial-specific housekeeping and full-length 16S rRNA genes, was applied to investigate the presence of microorganisms, including nontuberculous mycobacteria. The sequencing quality obtained from DNA extracted directly from tissues using NAS is comparable to the sequencing quality of reads generated from culture-derived DNA using both NAS and Illumina technologies. We present a new approach that provides complete and accurate genome sequence reconstruction, culture independently, and using an economically affordable technique.

15.
Lancet Microbe ; 4(12): e972-e982, 2023 12.
Article in English | MEDLINE | ID: mdl-37931638

ABSTRACT

BACKGROUND: Bedaquiline is a life-saving tuberculosis drug undergoing global scale-up. People at risk of weak tuberculosis drug regimens are a priority for novel drug access despite the potential source of Mycobacterium tuberculosis-resistant strains. We aimed to characterise bedaquiline resistance in individuals who had sustained culture positivity during bedaquiline-based treatment. METHODS: We did a retrospective longitudinal cohort study of adults (aged ≥18 years) with culture-positive pulmonary tuberculosis who received at least 4 months of a bedaquiline-containing regimen from 12 drug-resistant tuberculosis treatment facilities in Cape Town, South Africa, between Jan 20, 2016, and Nov 20, 2017. Sputum was programmatically collected at baseline (ie, before bedaquiline initiation) and each month to monitor treatment response per the national algorithm. The last available isolate from the sputum collected at or after 4 months of bedaquiline was designated the follow-up isolate. Phenotypic drug susceptibility testing for bedaquiline was done on baseline and follow-up isolates in MGIT960 media (WHO-recommended critical concentration of 1 µg/mL). Targeted deep sequencing for Rv0678, atpE, and pepQ, as well as whole-genome sequencing were also done. FINDINGS: In total, 40 (31%) of 129 patients from an estimated pool were eligible for this study. Overall, three (8%) of 38 patients assessable by phenotypic drug susceptibility testing for bedaquiline had primary resistance, 18 (47%) gained resistance (acquired or reinfection), and 17 (45%) were susceptible at both baseline and follow-up. Several Rv0678 and pepQ single-nucleotide polymorphisms and indels were associated with resistance. Although variants occurred in Rv0676c and Rv1979c, these variants were not associated with resistance. Targeted deep sequencing detected low-level variants undetected by whole-genome sequencing; however, none were in genes without variants already detected by whole-genome sequencing. Patients with baseline fluoroquinolone resistance, clofazimine exposure, and four or less effective drugs were more likely to have bedaquiline-resistant gain. Resistance gain was primarily due to acquisition; however, some reinfection by resistant strains occurred. INTERPRETATION: Bedaquiline-resistance gain, for which we identified risk factors, was common in these programmatically treated patients with sustained culture positivity. Our study highlights risks associated with implementing life-saving new drugs and shows evidence of bedaquiline-resistance transmission. Routine drug susceptibility testing should urgently accompany scale-up of new drugs; however, rapid drug susceptibility testing for bedaquiline remains challenging given the diversity of variants observed. FUNDING: Doris Duke Charitable Foundation, US National Institute of Allergy and Infectious Diseases, South African Medical Research Council, National Research Foundation, Research Foundation Flanders, Stellenbosch University Faculty of Medicine Health Sciences, South African National Research Foundation, Swiss National Science Foundation, and Wellcome Trust.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Adult , Humans , Adolescent , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , South Africa/epidemiology , Mycobacterium tuberculosis/genetics , Retrospective Studies , Microbial Sensitivity Tests , Longitudinal Studies , Reinfection/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis/drug therapy
16.
PLoS Comput Biol ; 19(11): e1011648, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38019772

ABSTRACT

BACKGROUND: Whole genome sequencing (WGS) holds great potential for the management and control of tuberculosis. Accurate analysis of samples with low mycobacterial burden, which are characterized by low (<20x) coverage and high (>40%) levels of contamination, is challenging. We created the MAGMA (Maximum Accessible Genome for Mtb Analysis) bioinformatics pipeline for analysis of clinical Mtb samples. METHODS AND RESULTS: High accuracy variant calling is achieved by using a long seedlength during read mapping to filter out contaminants, variant quality score recalibration with machine learning to identify genuine genomic variants, and joint variant calling for low Mtb coverage genomes. MAGMA automatically generates a standardized and comprehensive output of drug resistance information and resistance classification based on the WHO catalogue of Mtb mutations. MAGMA automatically generates phylogenetic trees with drug resistance annotations and trees that visualize the presence of clusters. Drug resistance and phylogeny outputs from sequencing data of 79 primary liquid cultures were compared between the MAGMA and MTBseq pipelines. The MTBseq pipeline reported only a proportion of the variants in candidate drug resistance genes that were reported by MAGMA. Notable differences were in structural variants, variants in highly conserved rrs and rrl genes, and variants in candidate resistance genes for bedaquiline, clofazmine, and delamanid. Phylogeny results were similar between pipelines but only MAGMA visualized clusters. CONCLUSION: The MAGMA pipeline could facilitate the integration of WGS into clinical care as it generates clinically relevant data on drug resistance and phylogeny in an automated, standardized, and reproducible manner.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Phylogeny , Genomics , Genome , Tuberculosis/drug therapy , Tuberculosis/genetics
17.
Front Immunol ; 14: 1216262, 2023.
Article in English | MEDLINE | ID: mdl-37727792

ABSTRACT

Background: Mycobacterium bovis (M. bovis) is the causative agent of animal tuberculosis (TB) which poses a threat to many of South Africa's most iconic wildlife species, including leopards (Panthera pardus). Due to limited tests for wildlife, the development of accurate ante-mortem tests for TB diagnosis in African big cat populations is urgently required. The aim of this study was to evaluate currently available immunological assays for their ability to detect M. bovis infection in leopards. Methods: Leopard whole blood (n=19) was stimulated using the QuantiFERON Gold Plus In-Tube System (QFT) to evaluate cytokine gene expression and protein production, along with serological assays. The GeneXpert® MTB/RIF Ultra (GXU®) qPCR assay, mycobacterial culture, and speciation by genomic regions of difference PCR, was used to confirm M. bovis infection in leopards. Results: Mycobacterium bovis infection was confirmed in six leopards and individuals that were tuberculin skin test (TST) negative were used for comparison. The GXU® assay was positive using all available tissue homogenates (n=5) from M. bovis culture positive animals. Mycobacterium bovis culture-confirmed leopards had greater antigen-specific responses, in the QFT interferon gamma release assay, CXCL9 and CXCL10 gene expression assays, compared to TST-negative individuals. One M. bovis culture-confirmed leopard had detectable antibodies using the DPP® Vet TB assay. Conclusion: Preliminary results demonstrated that immunoassays and TST may be potential tools to identify M. bovis-infected leopards. The GXU® assay provided rapid direct detection of infected leopards. Further studies should aim to improve TB diagnosis in wild felids, which will facilitate disease surveillance and screening.


Subject(s)
Mycobacterium Infections , Mycobacterium bovis , Panthera , Animals , Cats , Animals, Wild , Antibodies
18.
Lancet Microbe ; 4(10): e822-e829, 2023 10.
Article in English | MEDLINE | ID: mdl-37739001

ABSTRACT

BACKGROUND: Xpert MTB/RIF Ultra (Ultra) is a widely used rapid front-line tuberculosis and rifampicin-susceptibility testing. Mycobacterium Growth Indicator Tube (MGIT) 960 liquid culture is used as an adjunct but is vulnerable to contamination. We aimed to assess whether Ultra can be used on to-be-discarded contaminated cultures. METHODS: We stored contaminated MGIT960 tubes (growth-positive, acid-fast bacilli [AFB]-negative) originally inoculated at a high-volume laboratory in Cape Town, South Africa, to diagnose patients with presumptive pulmonary tuberculosis. Patients who had no positive tuberculosis results (smear, Ultra, or culture) at contamination detection and had another, later specimen submitted within 3 months of the contaminated specimen were selected. We evaluated the sensitivity and specificity of Ultra on contaminated growth from the first culture for tuberculosis (next-available non-contaminated culture result reference standard) and rifampicin resistance (vs MTBDRplus on a later isolate). We calculated potential time-to-diagnosis improvements and also evaluated the immunochromatographic MPT64 TBc assay. FINDINGS: Between June 1 and Aug 31, 2019, 36 684 specimens from 26 929 patients were processed for diagnostic culture. 2402 (7%) cultures from 2186 patients were contaminated. 1068 (49%) of 2186 patients had no other specimen submitted. After 319 exclusions, there were 799 people with at least one repeat specimen submitted; of these, we included in our study 246 patients (31%) with a culture-positive repeat specimen and 429 patients (54%) with a culture-negative repeat specimen. 124 patients (16%) with a culture-contaminated repeat specimen were excluded. When Ultra was done on the initial contaminated growth, sensitivity was 89% (95% CI 84-94) for tuberculosis and 95% (75-100) for rifampicin-resistance detection, and specificity was 95% (90-98) for tuberculosis and 98% (93-100) for rifampicin-resistance detection. If our approach were used the day after contamination detection, the time to tuberculosis detection would improve by a median of 23 days (IQR 13-45) and provide a result in many patients who had none. MPT64 TBc had a sensitivity of 5% (95% CI 0-25). INTERPRETATION: Ultra on AFB-negative growth from contaminated MGIT960 tubes had high sensitivity and specificity, approximating WHO criteria for sputum test target product performance and exceeding drug susceptibility testing. Our approach could mitigate negative effects of culture contamination, especially when repeat specimens are not submitted. FUNDING: The European & Developing Countries Clinical Trials Partnership, National Institutes of Health.


Subject(s)
Antibiotics, Antitubercular , Mycobacterium tuberculosis , Tuberculosis , United States , Humans , Rifampin/pharmacology , Rifampin/therapeutic use , Mycobacterium tuberculosis/genetics , Antibiotics, Antitubercular/pharmacology , Antibiotics, Antitubercular/therapeutic use , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , South Africa , Tuberculosis/diagnosis , Tuberculosis/drug therapy
19.
medRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461515

ABSTRACT

Background: The evolution of tuberculosis (TB) disease during the clinical latency period remains incompletely understood. Methods: 250 HIV-uninfected, adult household contacts of rifampicin-resistant TB with a negative symptom screen underwent baseline 18F-Fluorodeoxyglucose positron emission and computed tomography (PET/CT), repeated in 112 after 5-15 months. Following South African and WHO guidelines, participants did not receive preventive therapy. All participants had intensive baseline screening with spontaneous, followed by induced, sputum sampling and were then observed for an average of 4.7 years for culture-positive disease. Baseline PET/CT abnormalities were evaluated in relation to culture-positive disease. Results: At baseline, 59 (23.6%) participants had lung PET/CT findings consistent with TB of which 29 (11.6%) were defined as Subclinical TB, and 30 (12%) Subclinical TB-inactive. A further 83 (33.2%) had other lung parenchymal abnormalities and 108 (43.2%) had normal lungs. Over 1107-person years of follow-up 14 cases of culture-positive TB were diagnosed. Six cases were detected by intensive baseline screening, all would have been missed by the South African symptom-based screening strategy and only one detected by a WHO-recommended chest X-Ray screening strategy. Those with baseline Subclinical TB lesions on PET/CT were significantly more likely to be diagnosed with culture-positive TB over the study period, compared to those with normal lung parenchyma (10/29 [34.5%] vs 2/108 [1.9%], Hazard Ratio 22.37 [4.89-102.47, p<0.001]). Conclusions: These findings challenge the latent/active TB paradigm demonstrating that subclinical disease exists up to 4 years prior to microbiological detection and/or symptom onset. There are important implications for screening and management of TB.

20.
Infect Dis Rep ; 15(4): 403-416, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37489395

ABSTRACT

Drug-resistant tuberculosis (DR-TB) is still a major public health concern in South Africa. Mutations in M. tuberculosis can cause varying levels of phenotypic resistance to anti-TB medications. There have been no prior studies on gene mutations and the genotyping of DR-TB in the rural Eastern Cape Province; hence, we aimed to identify DR-TB mutations, genetic diversity, and allocated lineages among patients in this area. Using Xpert® MTB/RIF, we assessed the rifampin resistance of sputum samples collected from 1157 patients suspected of having tuberculosis. GenoType MTBDR plus VER 2.0 was used for the detection of mutations causing resistance to anti-TB medications. The next step was to spoligotype 441 isolates. The most prevalent rifampin resistance-conferring mutations were in rpoB codon S531L in INH-resistant strains; the katG gene at codon S315TB and the inhA gene at codon C-15TB had the most mutations; 54.5% and 24.7%, respectively. In addition, 24.6% of strains showed mutations in both the rpoB and inhA genes, while 69.9% of strains showed mutations in both the katG and rpoB genes. Heteroresistance was seen in 17.9% of all cases in the study. According to spoligotyping analysis, Beijing families predominated. Investigation of the evolutionary lineages of M. tuberculosis isolates can be carried out using the information provided by the study's diversity of mutations. In locations wherein these mutations have been discovered, decision-making regarding the standardization of treatment regimens or individualized treatment may be aided by the detection frequency of rpoB, katG, and inhA mutations in various study areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...