Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Aided Mol Des ; 36(4): 263-277, 2022 04.
Article in English | MEDLINE | ID: mdl-35597880

ABSTRACT

Accurately predicting free energy differences is essential in realizing the full potential of rational drug design. Unfortunately, high levels of accuracy often require computationally expensive QM/MM Hamiltonians. Fortuitously, the cost of employing QM/MM approaches in rigorous free energy simulation can be reduced through the use of the so-called "indirect" approach to QM/MM free energies, in which the need for QM/MM simulations is avoided via a QM/MM "correction" at the classical endpoints of interest. Herein, we focus on the computation of QM/MM binding free energies in the context of the SAMPL8 Drugs of Abuse host-guest challenge. Of the 5 QM/MM correction coupled with force-matching submissions, PM6-D3H4/MM ranked submission proved the best overall QM/MM entry, with an RMSE from experimental results of 2.43 kcal/mol (best in ranked submissions), a Pearson's correlation of 0.78 (second-best in ranked submissions), and a Kendall [Formula: see text] correlation of 0.52 (best in ranked submissions).


Subject(s)
Molecular Dynamics Simulation , Proteins , Ligands , Protein Binding , Quantum Theory , Thermodynamics
2.
J Nat Prod ; 85(5): 1315-1323, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35549259

ABSTRACT

Cold water benthic environments are a prolific source of structurally diverse molecules with a range of bioactivities against human disease. Specimens of a previously chemically unexplored soft coral, Duva florida, were collected during a deep-sea cruise that sampled marine invertebrates along the Irish continental margin in 2018. Tuaimenal A (1), a cyclized merosesquiterpenoid representing a new carbon scaffold with a highly substituted chromene core, was discovered through exploration of the soft coral secondary metabolome via NMR-guided fractionation. The absolute configuration was determined through vibrational circular dichroism. Functional biochemical assays and in silico docking experiments found tuaimenal A selectively inhibits the viral main protease (3CLpro) of SARS-CoV-2.


Subject(s)
Anthozoa , COVID-19 , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Florida , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2
3.
J Comput Chem ; 43(2): 84-95, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34741467

ABSTRACT

Docking studies play a critical role in the current workflow of drug discovery. However, limitations may often arise through factors including inadequate ligand sampling, a lack of protein flexibility, scoring function inadequacies (e.g., due to metals, co-factors, etc.), and difficulty in retaining explicit water molecules. Herein, we present a novel CHARMM-based induced fit docking (CIFDock) workflow that can circumvent these limitations by employing all-atom force fields coupled to enhanced sampling molecular dynamics procedures. Self-guided Langevin dynamics simulations are used to effectively sample relevant ligand conformations, side chain orientations, crystal water positions, and active site residue motion. Protein flexibility is further enhanced by dynamic sampling of side chain orientations using an expandable rotamer library. Steps in the procedure consisting of fixing individual components (e.g., the ligand) while sampling the other components (e.g., the residues in the active site of the protein) allow for the complex to adapt to conformational changes. Ultimately, all components of the complex-the protein, ligand, and waters-are sampled simultaneously and unrestrained with SGLD to capture any induced fit effects. This modular flexible docking procedure is automated using CHARMM scripting, interfaced with SLURM array processing, and parallelized to use the desired number of processors. We validated the CIFDock procedure by performing cross-docking studies using a data set comprised of 21 pharmaceutically relevant proteins. Five variants of the CHARMM-based SWISSDOCK scoring functions were created to quantify the results of the final generated poses. Results obtained were comparable to, or in some cases improved upon, commercial docking program data.


Subject(s)
Molecular Docking Simulation , Proteins/chemistry , Ligands , Thermodynamics , Water/chemistry
4.
Molecules ; 24(4)2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30769826

ABSTRACT

Indirect (S)QM/MM free energy simulations (FES) are vital to efficiently incorporating sufficient sampling and accurate (QM) energetic evaluations when estimating free energies of practical/experimental interest. Connecting between levels of theory, i.e., calculating Δ A l o w → h i g h , remains to be the most challenging step within an indirect FES protocol. To improve calculations of Δ A l o w → h i g h , we must: (1) compare the performance of all FES methods currently available; and (2) compile and maintain datasets of Δ A l o w → h i g h calculated for a wide-variety of molecules so that future practitioners may replicate or improve upon the current state-of-the-art. Towards these two aims, we introduce a new dataset, "HiPen", which tabulates Δ A g a s M M → 3 o b (the free energy associated with switching from an M M to an S C C - D F T B molecular description using the 3ob parameter set in gas phase), calculated for 22 drug-like small molecules. We compare the calculation of this value using free energy perturbation, Bennett's acceptance ratio, Jarzynski's equation, and Crooks' equation. We also predict the reliability of each calculated Δ A g a s M M → 3 o b by evaluating several convergence criteria including sample size hysteresis, overlap statistics, and bias metric ( Π ). Within the total dataset, three distinct categories of molecules emerge: the "good" molecules, for which we can obtain converged Δ A g a s M M → 3 o b using Jarzynski's equation; "bad" molecules which require Crooks' equation to obtain a converged Δ A g a s M M → 3 o b ; and "ugly" molecules for which we cannot obtain reliably converged Δ A g a s M M → 3 o b with either Jarzynski's or Crooks' equations. We discuss, in depth, results from several example molecules in each of these categories and describe how dihedral discrepancies between levels of theory cause convergence failures even for these gas phase free energy simulations.


Subject(s)
Energy Metabolism , Proteins/metabolism , Thermodynamics , Water/metabolism , Entropy , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...