Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Proc Natl Acad Sci U S A ; 105(45): 17227-31, 2008 Nov 11.
Article in English | MEDLINE | ID: mdl-18753629

ABSTRACT

The fabrication and spatial positioning of electrodes are becoming central issues in battery technology because of emerging needs for small scale power sources, including those embedded in flexible substrates and textiles. More generally, novel electrode positioning methods could enable the use of nanostructured electrodes and multidimensional architectures in new battery designs having improved electrochemical performance. Here, we demonstrate the synergistic use of biological and nonbiological assembly methods for fabricating and positioning small battery components that may enable high performance microbatteries with complex architectures. A self-assembled layer of virus-templated cobalt oxide nanowires serving as the active anode material in the battery anode was formed on top of microscale islands of polyelectrolyte multilayers serving as the battery electrolyte, and this assembly was stamped onto platinum microband current collectors. The resulting electrode arrays exhibit full electrochemical functionality. This versatile approach for fabricating and positioning electrodes may provide greater flexibility for implementing advanced battery designs such as those with interdigitated microelectrodes or 3D architectures.


Subject(s)
Bacteriophage M13/chemistry , Bioelectric Energy Sources/virology , Electrochemistry/methods , Electrodes , Nanotechnology/methods , Nanowires/chemistry , Microscopy, Atomic Force
3.
Small ; 3(3): 488-99, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17290481

ABSTRACT

The directed assembly of nanoparticles and nanoscale materials onto specific locations of a surface is one of the major challenges in nanotechnology. Here we present a simple and scalable method and model for the assembly of nanoparticles in between electrical leads. Gold nanoparticles, 20 nm in diameter, were assembled inside electrical gaps ranging from 15 to 150 nm with the use of positive ac dielectrophoresis. In this method, an alternating current is used to create a gradient of electrical field that attracts particles in between the two leads used to create the potential. Assembly is achieved when dielectrophoretic forces exceed thermal and electrostatic forces; the use of anchoring molecules, present in the gap, improves the final assembly stability. We demonstrate with both experiment and theory that nanoparticle assembly inside the gap is controlled by the applied voltage and the gap size. Experimental evidence and modeling suggest that a gap-size-dependent threshold voltage must be overcome before particle assembly is realized. Assembly results as a function of frequency and time are also presented. Assembly of fewer than 10 isolated particles in a gap is demonstrated. Preliminary electrical characterization reveals that stable conductance of the assembled particles can be achieved.


Subject(s)
Crystallization/methods , Electrophoresis/methods , Gold/chemistry , Microelectrodes , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...