Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(10): e10455, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37799448

ABSTRACT

Understanding the processes that drive interpopulation differences in demography and population dynamics is central to metapopulation ecology. In colonial species, populations are limited by local resource availability. However, individuals from larger colonies will travel greater distances to overcome density-dependent competition. Consequently, these individuals may also experience greater carry-over effects and interpopulation differences in demography. To test this prediction, we use mark-recapture data collected over four decades from two breeding colonies of a seabird, the Manx shearwater (Puffinus puffinus), that exhibit strong spatial overlap throughout the annual cycle but differ in population size and maximum foraging distances. We quantify interpopulation differences and synchrony in rates of survival and assess whether local mean wind speeds act to strengthen or disrupt synchrony. In addition, we examine whether the imputed interpopulation differences in survival can generate population-level consequences. The colony where individuals travel further during the breeding season had slightly lower and more variable rates of survival, indicative of individuals experiencing greater carry-over effects. Fluctuations in survival were highly synchronous between the colonies, but neither synchronous, nor asynchronous, variation could be strongly attributed to fluctuations in local mean wind speeds. Finally, we demonstrate that the imputed interpopulation differences in rates of survival could lead to considerable differences in population growth. We hypothesise that the observed interpopulation differences in rates of adult survival reflect carry-over effects associated with foraging distances during the breeding season. More broadly, our results highlight that breeding season processes can be important for understanding interpopulation differences in the demographic rates and population dynamics of long-lived species, such as seabirds.

2.
Polar Biol ; 45(5): 857-871, 2022.
Article in English | MEDLINE | ID: mdl-35673679

ABSTRACT

This study was performed to aid the management of the fishery for Antarctic krill Euphausia superba. Krill are an important component of the Antarctic marine ecosystem, providing a key food source for many marine predators. Additionally, krill are the target of the largest commercial fishery in the Southern Ocean, for which annual catches have been increasing and concentrating in recent years. The krill fishery is managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), which has endorsed a new management framework that requires information about the spatial distribution and biomass of krill. Here, we use krill density estimates from acoustic surveys and a GAMM framework to model habitat properties associated with high krill biomass during summer and winter in the northern Antarctic Peninsula region, an area important to the commercial fishery. Our models show elevated krill density associated with the shelf break, increased sea surface temperature, moderate chlorophyll-a concentration and increased salinity. During winter, our models show associations with shallow waters (< 1500 m) with low sea-ice concentration, medium sea-level anomaly and medium current speed. Our models predict temporal averages of the distribution and density of krill, which can be used to aid CCAMLR's revised ecosystem approach to fisheries management. Our models have the potential to help in the spatial and temporal design of future acoustic surveys that would preclude the need for modelled extrapolations. We highlight that the ecosystem approach to fisheries management of krill critically depends upon such field observations at relevant spatial and temporal scales. Supplementary Information: The online version contains supplementary material available at 10.1007/s00300-022-03039-y.

3.
Mar Biol ; 163: 156, 2016.
Article in English | MEDLINE | ID: mdl-27397936

ABSTRACT

The at-sea distribution of seabirds primarily depends on the distance from their breeding colony, and the abundance, distribution and predictability of their prey, which are subject to strong spatial and temporal variation. Many seabirds have developed flexible foraging strategies to deal with this variation, such as increasing their foraging effort or switching to more predictable, less energy dense, prey, in poor conditions. These responses may vary both within and between individuals, and understanding this variability is vital to predict the population-level impacts of spatially explicit environmental disturbances, such as offshore windfarms. We conducted a multi-year tracking study in order to investigate the inter-annual variation in the foraging behaviour and location of a population of northern gannets breeding on Alderney in the English Channel. To do so, we investigated the link between individual-level behaviour and population-level behaviour. We found that a sample of gannets tracked in 2015 had longer trip durations, travelled further from the colony and had larger core foraging areas and home range areas than gannets tracked in previous years. This inter-annual variation may be associated with oceanographic conditions indexed by the North Atlantic Oscillation (NAO). Our findings suggest that this inter-annual variation was driven by individuals visiting larger areas in all of their trips rather than individuals diversifying to visit more, distinct areas. These findings suggest that, for gannets at least, if prey becomes less abundant or more widely distributed, more individuals may be required to forage further from the colony, thus increasing their likelihood of encountering pressures from spatially explicit anthropogenic disturbances.

SELECTION OF CITATIONS
SEARCH DETAIL