Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
EMBO Rep ; 22(11): e52675, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34580980

ABSTRACT

LRRK2 serine/threonine kinase is associated with inherited Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases within their switch 2 motif to control their interactions with effectors. Recent work has shown that the metal-dependent protein phosphatase PPM1H counteracts LRRK2 by dephosphorylating Rabs. PPM1H is highly selective for LRRK2 phosphorylated Rabs, and closely related PPM1J exhibits no activity towards substrates such as Rab8a phosphorylated at Thr72 (pThr72). Here, we have identified the molecular determinant of PPM1H specificity for Rabs. The crystal structure of PPM1H reveals a structurally conserved phosphatase fold that strikingly has evolved a 110-residue flap domain adjacent to the active site. The flap domain distantly resembles tudor domains that interact with histones in the context of epigenetics. Cellular assays, crosslinking and 3-D modelling suggest that the flap domain encodes the docking motif for phosphorylated Rabs. Consistent with this hypothesis, a PPM1J chimaera with the PPM1H flap domain dephosphorylates pThr72 of Rab8a both in vitro and in cellular assays. Therefore, PPM1H has acquired a Rab-specific interaction domain within a conserved phosphatase fold.


Subject(s)
Protein Serine-Threonine Kinases , rab GTP-Binding Proteins , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Phosphorylation , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
2.
Biophys J ; 120(9): 1846-1855, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33887226

ABSTRACT

Parkinson's-disease-associated LRRK2 is a multidomain Ser/Thr kinase that phosphorylates a subset of Rab GTPases to control their effector functions. Rab GTPases are the prime regulators of membrane trafficking in eukaryotic cells. Rabs exert their biological effects by recruitment of effector proteins to subcellular compartments via their Rab-binding domain (RBD). Effectors are modular and typically contain additional domains that regulate various aspects of vesicle formation, trafficking, fusion, and organelle dynamics. The RBD of effectors is typically an α-helical coiled coil that recognizes the GTP conformation of the switch 1 and switch 2 motifs of Rabs. LRRK2 phosphorylates Rab8a at T72 (pT72) of its switch 2 α-helix. This post-translational modification enables recruitment of RILPL2, an effector that regulates ciliogenesis in model cell lines. A newly identified RBD motif of RILPL2, termed the X-cap, has been shown to recognize the phosphate via direct interactions between an arginine residue (R132) and pT72 of Rab8a. Here, we show that a second distal arginine (R130) is also essential for phospho-Rab binding by RILPL2. Through structural, biophysical, and cellular studies, we find that R130 stabilizes the primary R132:pT72 salt bridge through favorable enthalpic contributions to the binding affinity. These findings may have implications for the mechanism by which LRRK2 activation leads to assembly of phospho-Rab complexes and subsequent control of their membrane trafficking functions in cells.


Subject(s)
Arginine , Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Phosphorylation , rab GTP-Binding Proteins/metabolism
3.
Small GTPases ; 12(2): 133-146, 2021 03.
Article in English | MEDLINE | ID: mdl-31552791

ABSTRACT

LRRK2 is a multi-domain Ser/Thr kinase that is associated with inherited and sporadic cases of Parkinson's disease. Many mutations linked to disease are associated within a central ROC-COR regulatory region and the subsequent kinase domain, leading to enhanced catalytic activity. The N-terminus of human LRRK2 consists of armadillo repeat motifs (ARMs) followed by ankyrin repeats (ANKs). Recently, Rab GTPases have emerged as key players in LRRK2 function, both as substrates of the kinase, and as regulators of the catalytic activity. Rabs recruit effector proteins via their GTP-dependent switch 1 and 2 regions to distinct sub-cellular compartments to regulate membrane trafficking. LRRK2 phosphorylates Rab8, Rab10 and Rab12 in switch 2, and this activity is regulated via interactions with Rab29. Furthermore, the related Rab32-subfamily GTPases, Rab32 and Rab38, have also been shown to interact with LRRK2. Here, we have mapped the interactions of the Rab32-subfamily to the ARM domain of LRRK2. The complexes are dependent on the GTP state of the Rabs in vitro, implying that LRRK2 may be an effector of the Rab32-subfamily of small GTPases. X-ray crystal structures of the Rab32-family GTPases and subsequent mutational studies reveal that a positively charged residue in switch 1 is critical for binding of Rab32/38 to LRRK2. Homology modelling and mutational analyses of the ARM domain point to a patch of negatively charged residues that contribute to complex formation. These structural and biochemical studies provide a framework for understanding the molecular basis for Rab regulation of LRRK2 and its role in Parkinson's disease.


Subject(s)
Armadillo Domain Proteins , Guanosine Triphosphate , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , rab GTP-Binding Proteins , Humans , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Armadillo Domain Proteins/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease , Phosphorylation
4.
Traffic ; 21(11): 712-719, 2020 11.
Article in English | MEDLINE | ID: mdl-32969543

ABSTRACT

Rab GTPases are master regulators of membrane trafficking in eukaryotic cells. Phosphorylation of Rab GTPases was characterized in the 1990s and there have been intermittent reports of its relevance to Rab functions. Phosphorylation as a regulatory mechanism has gained prominence through the identification of Rabs as physiological substrates of leucine-rich repeat kinase 2 (LRRK2). LRRK2 is a Ser/Thr kinase that is associated with inherited and sporadic forms of Parkinson disease. In recent years, numerous kinases and their associated signaling pathways have been identified that lead to phosphorylation of Rabs. These emerging studies suggest that serine/threonine and tyrosine phosphorylation of Rabs may be a widespread and under-appreciated mechanism for controlling their membrane trafficking functions. Here we survey current knowledge of Rab phosphorylation and discuss models for how this post-translational mechanism exerts control of membrane trafficking.


Subject(s)
Parkinson Disease , rab GTP-Binding Proteins , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Phosphorylation , Protein Transport , rab GTP-Binding Proteins/metabolism
5.
Structure ; 28(4): 406-417.e6, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32017888

ABSTRACT

Rab8a is associated with the dynamic regulation of membrane protrusions in polarized cells. Rab8a is one of several Rab GTPases that are substrates of leucine-rich repeat kinase 2 (LRRK2), a serine/threonine kinase that is linked to Parkinson's disease. Rab8a is phosphorylated at T72 (pT72) in its switch 2 helix and recruits the phospho-specific effector RILPL2, which subsequently regulates ciliogenesis. Here, we report the crystal structure of phospho-Rab8a (pRab8a) in complex with the RH2 (RILP homology) domain of RILPL2. The complex is a heterotetramer with RILPL2 forming a central α-helical dimer that bridges two pRab8a molecules. The N termini of the α helices cross over, forming an X-shaped cap (X-cap) that orients Arg residues from RILPL2 toward pT72. X-cap residues critical for pRab8a binding are conserved in JIP3 and JIP4, which also interact with LRRK2-phosphorylated Rab10. We propose a general mode of recognition for phosphorylated Rab GTPases by this family of phospho-specific effectors.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , rab GTP-Binding Proteins/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Molecular Docking Simulation , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , rab GTP-Binding Proteins/metabolism
6.
PLoS One ; 14(1): e0208889, 2019.
Article in English | MEDLINE | ID: mdl-30640902

ABSTRACT

The Rab family of small GTPases regulate various aspects of cellular dynamics in eukaryotic cells. Membrane trafficking has emerged as central to the functions of leucine-rich repeat kinase 2 (LRRK2), which is associated with inherited and sporadic forms of Parkinson's disease (PD). Rabs act as both regulators of the catalytic activity and targets for serine/threonine phosphorylation by LRRK2. Rab32, Rab38 and Rab29 have been shown to regulate LRRK2 sub-cellular localization through direct interactions. Recently, Rab29 was shown to escort LRRK2 to the Golgi apparatus and activate the phosphorylation of Rab8 and Rab10. Rab32 is linked to multiple cellular functions including endosomal trafficking, mitochondrial dynamics, and melanosome biogenesis. A missense mutation in Rab32 has also recently been linked to PD. Here, we demonstrate that Rab32 directly interacts with sorting nexin 6 (SNX6). SNX6 is a transient subunit of the retromer, an endosome-Golgi retrieval complex whose Vps35 subunit is strongly associated with PD. We could further show that localization of cation-independent mannose-6-phosphate receptors, which are recycled to the trans-Golgi network (TGN) by the retromer, was affected by both Rab32 and SNX6. These data imply that Rab32 is linked to SNX6/retromer trafficking at the Golgi, and also suggests a possible connection between the retromer and Rab32 in the trafficking and biological functions of LRRK2.


Subject(s)
Golgi Apparatus/metabolism , Sorting Nexins/metabolism , rab GTP-Binding Proteins/metabolism , Blotting, Western , Cell Line , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Protein Binding , Two-Hybrid System Techniques , trans-Golgi Network
7.
Mol Neurodegener ; 13(1): 3, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29357897

ABSTRACT

BACKGROUND: Mutations in LRRK2 are a common genetic cause of Parkinson's disease (PD). LRRK2 interacts with and phosphorylates a subset of Rab proteins including Rab8a, a protein which has been implicated in various centrosome-related events. However, the cellular consequences of such phosphorylation remain elusive. METHODS: Human neuroblastoma SH-SY5Y cells stably expressing wildtype or pathogenic LRRK2 were used to test for polarity defects in the context of centrosomal positioning. Centrosomal cohesion deficits were analyzed from transiently transfected HEK293T cells, as well as from two distinct peripheral cell types derived from LRRK2-PD patients. Kinase assays, coimmunoprecipitation and GTP binding/retention assays were used to address Rab8a phosphorylation by LRRK2 and its effects in vitro. Transient transfections and siRNA experiments were performed to probe for the implication of Rab8a and its phosphorylated form in the centrosomal deficits caused by pathogenic LRRK2. RESULTS: Here, we show that pathogenic LRRK2 causes deficits in centrosomal positioning with effects on neurite outgrowth, cell polarization and directed migration. Pathogenic LRRK2 also causes deficits in centrosome cohesion which can be detected in peripheral cells derived from LRRK2-PD patients as compared to healthy controls, and which are reversed upon LRRK2 kinase inhibition. The centrosomal cohesion and polarity deficits can be mimicked when co-expressing wildtype LRRK2 with wildtype but not phospho-deficient Rab8a. The centrosomal defects induced by pathogenic LRRK2 are associated with a kinase activity-dependent increase in the centrosomal localization of phosphorylated Rab8a, and are prominently reduced upon RNAi of Rab8a. CONCLUSIONS: Our findings reveal a new function of LRRK2 mediated by Rab8a phosphorylation and related to various centrosomal defects.


Subject(s)
Centrosome/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , rab GTP-Binding Proteins/metabolism , Cell Line , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/pathology , Phosphorylation
8.
PLoS One ; 9(10): e111632, 2014.
Article in English | MEDLINE | ID: mdl-25360523

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain 280 kDa protein that is linked to Parkinson's disease (PD). Mutations especially in the GTPase and kinase domains of LRRK2 are the most common causes of heritable PD and are also found in sporadic forms of PD. Although the cellular function of LRRK2 is largely unknown there is increasing evidence that these mutations cause cell death due to autophagic dysfunction and mitochondrial damage. Here, we demonstrate a novel mechanism of LRRK2 binding and transport, which involves the small GTPases Rab32 and Rab38. Rab32 and its closest homologue Rab38 are known to organize the trans-Golgi network and transport of key enzymes in melanogenesis, whereas their function in non-melanogenic cells is still not well understood. Cellular processes such as autophagy, mitochondrial dynamics, phagocytosis or inflammatory processes in the brain have previously been linked to Rab32. Here, we demonstrate that Rab32 and Rab38, but no other GTPase tested, directly interact with LRRK2. GFP-Trap analyses confirmed the interaction of Rab32 with the endogenous LRRK2. In yeast two-hybrid experiments we identified a predicted coiled-coil motif containing region within the aminoterminus of LRRK2 as the possible interacting domain. Fluorescence microscopy demonstrated a co-localization of Rab32 and LRRK2 at recycling endosomes and transport vesicles, while overexpression of a constitutively active mutant of Rab32 led to an increased co-localization with Rab7/9 positive perinuclear late endosomes/MVBs. Subcellular fractionation experiments supported the novel role of Rab32 in LRRK2 late endosomal transport and sorting in the cell. Thus, Rab32 may regulate the physiological functions of LRRK2.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , rab GTP-Binding Proteins/metabolism , Amino Acid Motifs , Animals , Biomarkers/metabolism , Cell Compartmentation , Endosomes/metabolism , Green Fluorescent Proteins/metabolism , Humans , Immunoprecipitation , Intracellular Space/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Mutant Proteins/metabolism , NIH 3T3 Cells , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/chemistry , Protein Transport , Subcellular Fractions/metabolism , Two-Hybrid System Techniques
9.
Eur J Cell Biol ; 93(5-6): 194-204, 2014.
Article in English | MEDLINE | ID: mdl-25015719

ABSTRACT

Junction-mediating and regulatory protein (JMY) was originally identified as a transcriptional co-factor in the p53-response to DNA damage. Aside from this nuclear function, recent years have uncovered an additional function of JMY, namely in cytoskeleton remodelling and actin assembly. The C-terminus of JMY comprises a canonical VCA-module, the sequence signature of Arp2/3 complex activators. Furthermore, tandem repeats of 3 WH2 (V, or more recently also W) domains render JMY capable of Arp2/3 independent actin assembly. The motility promoting cytoplasmic function of JMY is abrogated upon DNA-damage and nuclear translocation of JMY. To address the precise cellular function of JMY in cellular actin rearrangements, we have searched for potential new interaction partners by mass spectrometry. We identified several candidates and correlated their localization with the subcellular dynamics of JMY. JMY is localized to dynamic vesiculo-tubular structures throughout the cytoplasm, which are decorated with actin and Arp2/3 complex. Moreover, JMY partially colocalizes and interacts with VAP-A, which is involved in vesicle-based transport processes. Finally, overexpression of JMY results in Golgi dispersal by loss from the trans-site and affects VSV-G transport. These analyses, together with biochemical experiments, indicate that JMY drives vesicular trafficking in the trans-Golgi region and at ER-membrane contact sites (MCS), distinct from other Arp2/3 activators involved in vesicle transport processes such as the related WHAMM or WASH.


Subject(s)
Nuclear Proteins/metabolism , Trans-Activators/metabolism , trans-Golgi Network/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Animals , COS Cells , Carrier Proteins/metabolism , Cell Cycle Proteins , Chlorocebus aethiops , HeLa Cells , Humans , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Mice , Nuclear Proteins/genetics , Protein Multimerization , Protein Transport , Trans-Activators/genetics , Vesicular Transport Proteins , Viral Envelope Proteins/metabolism
10.
PLoS One ; 8(5): e64149, 2013.
Article in English | MEDLINE | ID: mdl-23737971

ABSTRACT

Small GTPases of the Rab family are important regulators of a large variety of different cellular functions such as membrane organization and vesicle trafficking. They have been shown to play a role in several human diseases. One prominent member, Rab6, is thought to be involved in the development of Alzheimer's Disease, the most prevalent mental disorder worldwide. Previous studies have shown that Rab6 impairs the processing of the amyloid precursor protein (APP), which is cleaved to ß-amyloid in brains of patients suffering from Alzheimer's Disease. Additionally, all three members of the Mint adaptor family are implied to participate in the amyloidogenic pathway. Here, we report the identification of a new Mint1 isoform in a yeast two-hybrid screening, Mint1 826, which lacks an eleven amino acid (aa) sequence in the conserved C-terminal region. Mint1 826, but not the conventional Mint1, interacts with Rab6 via the PTB domain. This interaction is nucleotide-dependent, Rab6-specific and influences the subcellular localization of Mint1 826. We were able to detect and sequence a corresponding proteolytic peptide derived from cellular Mint1 826 by mass spectrometry proving the absence of aa 495-505 and could show that the deletion does not influence the ability of this adaptor protein to interact with APP. Taking into account that APP interacts and co-localizes with Mint1 826 and is transported in Rab6 positive vesicles, our data suggest that Mint1 826 bridges APP to the small GTPase at distinct cellular sorting points, establishing Mint1 826 as an important player in regulation of APP trafficking and processing.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Nerve Tissue Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cell Line , Gene Expression Regulation , Humans , Male , Mice , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Biochem Biophys Res Commun ; 396(3): 679-83, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20447381

ABSTRACT

In extension to previously applied techniques like yeast two-hybrid and GST pull-down assays, we successfully established a FACS-based FRET analysis to investigate the interaction of the Mint3 adaptor protein and the small Rab GTPase Rab6A in living mammalian cells. A Mint3 mutant containing only the PTB domain (Mint3Delta6) is able to interact with the constitutively active form of Rab6A. Mint3Delta4, a mutant lacking part of the PTB domain was unable to interact with Rab6A in GST pull-down analysis and did not produce FRET signals, when co-expressed with active Rab6A. We demonstrate that this FACS-based FRET analysis is a suitable method for interaction studies between two proteins in living cells.


Subject(s)
Carrier Proteins/metabolism , Flow Cytometry/methods , Fluorescence Resonance Energy Transfer/methods , Protein Interaction Mapping/methods , rab GTP-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing , Carrier Proteins/genetics , Cell Separation , HeLa Cells , Humans , rab GTP-Binding Proteins/genetics
12.
J Biol Chem ; 284(15): 10138-49, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19176482

ABSTRACT

Presenilin 1 and 2 (PS) are critical components of the gamma-secretase complex that cleaves type I transmembrane proteins within their transmembrane domains. This process leads to release of proteolytically processed products from cellular membranes and plays an essential role in signal transduction or vital functions as cell adhesion. Here we studied the function of presenilins in cell-matrix interaction of wild-type and PS knock-out mouse embryonic fibroblasts. We found for PS1(-/-) cells an altered morphology with significantly reduced sizes of focal adhesion sites compared with wild type. Cell force analyses on micropatterned elastomer films revealed PS1(-/-) cell forces to be reduced by 50%. Pharmacological inhibition confirmed this function of gamma-secretase in adhesion site and cell force formation. On the regulatory level, PS1 deficiency was associated with strongly decreased phosphotyrosine levels of focal adhesion site-specific proteins. The reduced tyrosine phosphorylation was caused by a down-regulation of c-Src kinase activity primarily at the level of c-Src transcription. The direct regulatory connection between PS1 and c-Src could be identified with ephrinB2 as PS1 target protein. Overexpression of ephrinB2 cytoplasmic domain resulted in its nuclear translocation with increased levels of c-Src and a full complementation of the PS1(-/-) adhesion and phosphorylation phenotype. Cleavage of full-length EB2 and subsequent intracellular domain translocation depended on PS1 as these processes were only found in WT cells. Therefore, we conclude that gamma-secretase is vital for controlling cell adhesion and force formation by transcriptional regulation of c-Src via ephrinB2 cleavage.


Subject(s)
Gene Expression Regulation , Presenilin-1/metabolism , src-Family Kinases/metabolism , Animals , Cell Line , Cytoplasm/metabolism , Ephrin-B2/metabolism , Fibroblasts/metabolism , Focal Adhesions , Mice , Microscopy, Fluorescence , Models, Biological , Phenotype , Protein Processing, Post-Translational , Tyrosine/chemistry
13.
FEBS J ; 273(14): 3393-410, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16857019

ABSTRACT

The molecular masses of macromolecules and subunits of the extracellular hemoglobin from the fresh-water crustacean Daphnia magna were determined by analytical ultracentrifugation, multiangle laser light scattering and electrospray ionization mass spectrometry. The hemoglobins from hypoxia-incubated, hemoglobin-rich and normoxia-incubated, hemoglobin-poor Daphnia magna were analyzed separately. The sedimentation coefficient of the macromolecule was 17.4 +/- 0.1 S, and its molecular mass was 583 kDa (hemoglobin-rich animals) determined by AUC and 590.4 +/- 11.1 kDa (hemoglobin-rich animals) and 597.5 +/- 49 kDa (hemoglobin-poor animals), respectively, determined by multiangle laser light scattering. Measurements of the hemoglobin subunit mass of hemoglobin-rich animals by electrospray ionization mass spectrometry revealed a significant peak at 36.482 +/- 0.0015 kDa, i.e. 37.715 kDa including two heme groups. The hemoglobin subunits are modified by O-linked glycosylation in the pre-A segments of domains 1. No evidence for phosphorylation of hemoglobin subunits was found. The subunit migration behavior during SDS/PAGE was shown to be influenced by the buffer system used (Tris versus phosphate). The subunit mass heterogeneity found using Tris buffering can be explained by glycosylation of hemoglobin subunits. Based on molecular mass information, Daphnia magna hemoglobin is demonstrated to consist of 16 subunits. The quaternary structure of the Daphnia magna hemoglobin macromolecule was assessed by three-dimensional reconstructions via single-particle analysis based on negatively stained electron microscopic specimens. It turned out to be much more complex than hitherto proposed: it displays D4 symmetry with a diameter of approximately 12 nm and a height of about 8 nm.


Subject(s)
Daphnia/chemistry , Hemoglobins/analysis , Macromolecular Substances/chemistry , Protein Structure, Quaternary , Animals , Chromatography, Gas , Chromatography, High Pressure Liquid , Female , Glycosylation , Hemoglobins/metabolism , Hemoglobins/ultrastructure , Imaging, Three-Dimensional , Lasers , Light , Molecular Weight , Protein Conformation , Protein Denaturation , Protein Subunits/chemistry , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...