Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Epidemiol Infect ; 151: e130, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37439254

ABSTRACT

Salmonella spp. is a common zoonotic pathogen, causing gastrointestinal infections in people. Pigs and pig meat are a major source of infection. Although farm biosecurity is believed to be important for controlling Salmonella transmission, robust evidence is lacking on which measures are most effective. This study enrolled 250 pig farms across nine European countries. From each farm, 20 pooled faecal samples (or similar information) were collected and analysed for Salmonella presence. Based on the proportion of positive results, farms were categorised as at higher or lower Salmonella risk, and associations with variables from a comprehensive questionnaire investigated. Multivariable analysis indicated that farms were less likely to be in the higher-risk category if they had '<400 sows'; used rodent baits close to pig enclosures; isolated stay-behind (sick) pigs; did not answer that the hygiene lock/ anteroom was easy to clean; did not have a full perimeter fence; did apply downtime of at least 3 days between farrowing batches; and had fully slatted flooring in all fattener buildings. A principal components analysis assessed the sources of variation between farms, and correlation between variables. The study results suggest simple control measures that could be prioritised on European pig farms to control Salmonella.


Subject(s)
Salmonella Infections, Animal , Swine Diseases , Swine , Animals , Female , Farms , Biosecurity , Swine Diseases/epidemiology , Swine Diseases/prevention & control , Salmonella , Europe/epidemiology , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/prevention & control , Animal Husbandry/methods
2.
J Fish Dis ; 46(11): 1163-1171, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37453080

ABSTRACT

Different species of Shewanella spp. widely inhabit freshwater and marine environments. Some of them are opportunistic fish pathogens. The application of high-throughput sequencing enabled the characterization and taxonomic reclassification of many Shewanella spp. species. Still, some strains collected from fish need to be better recognized. The aim of the present study was to classify and determine the phylogenetic relationships of Shewanella spp. collected from fish. The complete genomes of 94 strains of Shewanella spp. from different fish species were sequenced using Illumina platform (MiSeq). The 16S rRNA gene, genomic features and whole-genome relationships of those bacteria were comprehensively analysed in comparison to reference strains. Whole-genome analysis showed that the tested Shewanella spp. strains were clustered into six groups similar to reference strains of S. xiamenensis, S. oneidensis, S. glacialipiscicola, S. hafniensis, S. baltica and S. oncorhynchi. Our study indicates that the whole-genome sequence analysis enabled taxonomic classification and assessment of the diversity of the Shewanella spp. strains, as opposed to recently the gold standard method of 16S rRNA amplicon sequencing. The high genetic diversity and low similarity to the reference genome of S. oneidensis indicate that the group of strains may be a subspecies or even new species. Furthermore, we showed that the most frequent Shewanella spp. species occurring in freshwater fish in our study is the recently described species S. oncorhynchi.

3.
Pathogens ; 12(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37375526

ABSTRACT

Enterococci as opportunistic bacteria are important for human health. Due to the prevalence and ease of acquisition and transfer of their genes, they are an excellent indicator of environmental contamination and the spread of antimicrobial resistance. The aim of the study was to assess the prevalence of Enterococcus spp. in wild birds in Poland, determination of antimicrobial susceptibility and WGS analysis of Enterococcus (E.) faecium and E. faecalis. For this purpose, 138 samples from various species of free-living birds were tested, with 66.7% positive results. Fourteen species were detected, with E. faecalis being the most common, followed by E. casseliflavus and E. hirae. In antimicrobial susceptibility testing, 10.0% of E. faecalis and 50.0% of E. faecium showed resistance to one antimicrobial agent, in addition the MDR phenotype which was found in one E. faecium. The most common resistance phenotype included tetracycline and quinupristin/dalfopristin. The WGS analysis confirmed the significant advantage of the virulence gene diversity of E. faecalis strains over E. faecium. In addition, plasmid replicons were found in 42.0% of E. faecalis and 80.0% of E. faecium. The obtained results confirm free-living birds can be a reservoir of Enterococcus spp. with a considerable zoonotic potential.

4.
J Glob Antimicrob Resist ; 33: 218-220, 2023 06.
Article in English | MEDLINE | ID: mdl-37086889

ABSTRACT

Monophasic Salmonella Typhimurium (1,4,[5],12:i:-) is one of the leading Salmonella serovars causing human salmonellosis in Europe. It has been observed in Poland since 2008. This serovar is considered the one with the highest rate of mcr prevalence. This report presents a sequence characteristic of the multidrug-resistant (MDR) monophasic S. Typhimurium isolated from a pig faecal sample with the confirmed presence of the mcr-1.1 gene. The genome was assembled into the complete chromosome and 4 plasmids: IncHI2 (232 119 bp), IncFIB/IncFIC (133 901 bp), ColRNAI (6659 bp), and Col8282 (4066bp). The strain identified as ST34 carried multiple antimicrobial resistance genes located both on chromosome (tet(B)) and plasmids: mcr-1.1 and blaTEM-1B on ST4-IncHI2, and mef(B), blaTEM-1B, aadA1, qacL, dfrA12, aadA2, cmlA1, sul3, tet(M) on IncFIB/FIC. The mcr-1.1 gene was previously identified in E. coli deriving mainly from poultry, but this is the first case of the occurrence of mcr-positive Salmonella in Poland. The obtained results of analysis of the genome content draw attention to the problem of multidrug-resistant pathogens, especially in the context of resistance to colistin which is a last-resort antimicrobial.


Subject(s)
Escherichia coli , Salmonella typhimurium , Animals , Colistin/pharmacology , Escherichia coli/genetics , Poland , Salmonella typhimurium/genetics , Serogroup , Swine
5.
Cancers (Basel) ; 14(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36551735

ABSTRACT

Introduction: Factors other than PD-L1 (Programmed Death Ligand 1) are being sought as predictors for cancer immuno- or chemoimmunotherapy in ongoing studies and long-term observations. Despite high PD-L1 expression on tumor cells, some patients do not benefit from immunotherapy, while others, without the expression of this molecule, respond to immunotherapy. Attention has been paid to the composition of the gut microbiome as a potential predictive factor for immunotherapy effectiveness. Materials and Methods: Our study enrolled 47 Caucasian patients with stage IIIB or IV non-small cell lung cancer (NSCLC). They were eligible for treatment with first- or second-line immunotherapy or chemoimmunotherapy. We collected stool samples before the administration of immunotherapy. We performed next-generation sequencing (NGS) on DNA isolated from the stool sample and analyzed bacterial V3 and V4 of the 16S rRNA gene. Results: We found that bacteria from the families Barnesiellaceae, Ruminococcaceae, Tannerellaceae, and Clostridiaceae could modulate immunotherapy effectiveness. A high abundance of Bacteroidaaceae, Barnesiellaceae, and Tannerellaceae could extend progression-free survival (PFS). Moreover, the risk of death was significantly higher in patients with a high content of Ruminococcaceae family (HR = 6.3, 95% CI: 2.6 to 15.3, p < 0.0001) and in patients with a low abundance of Clostridia UCG-014 (HR = 3.8, 95% CI: 1.5 to 9.8, p = 0.005) regardless of the immunotherapy line. Conclusions: The Clostridia class in gut microbiota could affect the effectiveness of immunotherapy, as well as the length of survival of NSCLC patients who received this method of treatment.

6.
Data Brief ; 45: 108721, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36426054

ABSTRACT

Salmonella enterica subsp. enterica serovar Dublin (S. Dublin) is a zoonotic pathogen causing infections in animals, especially in cattle. In this study, we report draft genome sequences of four S. Dublin isolated between 1956 and 1957 from cattle and fox in Poland. Whole genome sequencing was performed on the Illumina platform and the data is available at National Center for Biotechnology Information under the BioProject accession number PRJNA865912. In order to better understand the genetic basis of epidemiology of S. Dublin infection, the obtained sequences were analyzed using the tools which are available at Center of Genomic Epidemiology (https://www.genomicepidemiology.org/) including core genome multilocus sequence typing (cgMLST) and core genome single nucleotide polymorphisms (cgSNPs).

7.
Microbiol Resour Announc ; 11(9): e0038522, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35969063

ABSTRACT

Bacteria of the Bacillus cereus group are Gram-positive rods and are widespread in nature, but little information is currently available about their presence in reptiles. Here, we report draft genome sequences of six Bacillus isolates belonging to three species, namely, Bacillus cereus, Bacillus paranthracis, and Bacillus toyonensis, isolated from pet reptiles in Poland.

8.
AMB Express ; 12(1): 86, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35792976

ABSTRACT

The significance of Akkermansia bacteria presence in gut micobiome, mainly Akkermansia mucinifila, is currently being investigated in the context of supporting therapy and marker for response to immunotherapy in cancer patients. It is indicated that patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs) respond better to treatment if this bacterium is present in the intestine.We performed next-generation sequencing of the gut microbiome from patients treated in the first or second line therapy with anti-PD-1 (anti-programmed death 1) or anti-PD-L1 (anti-programmed death ligand 1) monoclonal antibodies. In our study group of 47 NSCLC patients, the percentage of Akkermansiaceae was higher in patients with disease stabilization and with partial response to immunotherapy compared to patients with disease progression. Moreover, we found that a higher percentage of Akkermansiaceae was present in patients with squamous cell carcinoma compared to adenocarcinoma. Our study showed that Akkermansiaceae could be supporting marker for response to immunotherapies in NSCLC patients, nonetheless further in-depth studies should be conducted in the role of Akkermansiaceae in cancer immunotherapy.

9.
J Antimicrob Chemother ; 77(7): 1883-1893, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35466367

ABSTRACT

BACKGROUND: Real-time quantitative PCR (qPCR) is an affordable method to quantify antimicrobial resistance gene (ARG) targets, allowing comparisons of ARG abundance along animal production chains. OBJECTIVES: We present a comparison of ARG abundance across various animal species, production environments and humans in Europe. AMR variation sources were quantified. The correlation of ARG abundance between qPCR data and previously published metagenomic data was assessed. METHODS: A cross-sectional study was conducted in nine European countries, comprising 9572 samples. qPCR was used to quantify abundance of ARGs [aph(3')-III, erm(B), sul2, tet(W)] and 16S rRNA. Variance component analysis was conducted to explore AMR variation sources. Spearman's rank correlation of ARG abundance values was evaluated between pooled qPCR data and earlier published pooled metagenomic data. RESULTS: ARG abundance varied strongly among animal species, environments and humans. This variation was dominated by between-farm variation (pigs) or within-farm variation (broilers, veal calves and turkeys). A decrease in ARG abundance along pig and broiler production chains ('farm to fork') was observed. ARG abundance was higher in farmers than in slaughterhouse workers, and lowest in control subjects. ARG abundance showed a high correlation (Spearman's ρ > 0.7) between qPCR data and metagenomic data of pooled samples. CONCLUSIONS: qPCR analysis is a valuable tool to assess ARG abundance in a large collection of livestock-associated samples. The between-country and between-farm variation of ARG abundance could partially be explained by antimicrobial use and farm biosecurity levels. ARG abundance in human faeces was related to livestock antimicrobial resistance exposure.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Chickens , Cross-Sectional Studies , Drug Resistance, Bacterial , Feces , Genes, Bacterial , Humans , Livestock , Meat , RNA, Ribosomal, 16S/genetics , Swine
10.
Lett Appl Microbiol ; 75(2): 224-233, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35388505

ABSTRACT

This study was conducted to evaluate the performance of a screening protocol to detect and isolate mcr-positive Escherichia coli and Salmonella spp. from animal caecal content and meat samples. We used a multicentre approach involving 12 laboratories from nine European countries. All participants applied the same methodology combining a multiplex PCR performed on DNA extracted from a pre-enrichment step, followed by a selective culture step on three commercially available chromogenic agar plates. The test panel was composed of two negative samples and four samples artificially contaminated with E. coli and Salmonella spp. respectively harbouring mcr-1 or mcr-3 and mcr-4 or mcr-5 genes. PCR screening resulted in a specificity of 100% and a sensitivity of 83%. Sensitivity of each agar medium to detect mcr-positive colistin-resistant E. coli or Salmonella spp. strains was 86% for CHROMID® Colistin R, 75% for CHROMagarTM COL-APSE and 70% for COLISTIGRAM. This combined method was effective to detect and isolate most of the E. coli or Salmonella spp. strains harbouring different mcr genes from food-producing animals and food products and might thus be used as a harmonized protocol for the screening of mcr genes in food-producing animals and food products in Europe.


Subject(s)
Escherichia coli , Meat , Salmonella , Agar , Animals , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/isolation & purification , Escherichia coli Proteins/genetics , Meat/microbiology , Microbial Sensitivity Tests , Plasmids , Salmonella/isolation & purification
11.
Vet Sci ; 9(3)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35324861

ABSTRACT

This paper describes a fatal case of nontuberculosis mycobacteriosis in a four-year-old brown caiman kept in captivity. Although the clinical signs were asymptomatic, severe gross lesions were observed, namely necrotic inflammation of the intestines and granulomatous hepatitis. Microbiological and histopathological examination performed on the tissues collected postmortem revealed a mixed infection of Mycobacterium lentiflavum and Mycobacterium szulgai, secondarily mimicked with Salmonella Coeln, Aeromonas hydrofila, Citrobacter freundii, and Providencia rettgeri. Those microorganisms are not only potentially pathogenic to reptiles, but also have a zoonotic importance for humans. Our findings clearly demonstrate the importance of educating owners and maintaining hygiene rules when handling reptiles.

12.
J Antimicrob Chemother ; 77(4): 969-978, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35061866

ABSTRACT

OBJECTIVES: The occurrence and zoonotic potential of antimicrobial resistance (AMR) in pigs and broilers has been studied intensively in past decades. Here, we describe AMR levels of European pig and broiler farms and determine the potential risk factors. METHODS: We collected faeces from 181 pig farms and 181 broiler farms in nine European countries. Real-time quantitative PCR (qPCR) was used to quantify the relative abundance of four antimicrobial resistance genes (ARGs) [aph(3')-III, erm(B), sul2 and tet(W)] in these faeces samples. Information on antimicrobial use (AMU) and other farm characteristics was collected through a questionnaire. A mixed model using country and farm as random effects was performed to evaluate the relationship of AMR with AMU and other farm characteristics. The correlation between individual qPCR data and previously published pooled metagenomic data was evaluated. Variance component analysis was conducted to assess the variance contribution of all factors. RESULTS: The highest abundance of ARG was for tet(W) in pig faeces and erm(B) in broiler faeces. In addition to the significant positive association between corresponding ARG and AMU levels, we also found on-farm biosecurity measures were associated with relative ARG abundance in both pigs and broilers. Between-country and between-farm variation can partially be explained by AMU. Different ARG targets may have different sample size requirements to represent the overall farm level precisely. CONCLUSIONS: qPCR is an efficient tool for targeted assessment of AMR in livestock-related samples. The AMR variation between samples was mainly contributed to by between-country, between-farm and within-farm differences, and then by on-farm AMU.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Chickens , Drug Resistance, Bacterial , Farms , Feces , Risk Factors , Swine
13.
Environ Res ; 208: 112715, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35033551

ABSTRACT

Livestock feces with antimicrobial resistant bacteria reaches the farm floor, manure pit, farm land and wider environment by run off and aerosolization. Little research has been done on the role of dust in the spread of antimicrobial resistance (AMR) in farms. Concentrations and potential determinants of antimicrobial resistance genes (ARGs) in farm dust are at present not known. Therefore in this study absolute ARG levels, representing the levels people and animals might be exposed to, and relative abundances of ARGs, representing the levels in the bacterial population, were quantified in airborne farm dust using qPCR. Four ARGs were determined in 947 freshly settled farm dust samples, captured with electrostatic dustfall collectors (EDCs), from 174 poultry (broiler) and 159 pig farms across nine European countries. By using linear mixed modeling, associations with fecal ARG levels, antimicrobial use (AMU) and farm and animal related parameters were determined. Results show similar relative abundances in farm dust as in feces and a significant positive association (ranging between 0.21 and 0.82) between the two reservoirs. AMU in pigs was positively associated with ARG abundances in dust from the same stable. Higher biosecurity standards were associated with lower relative ARG abundances in poultry and higher relative ARG abundances in pigs. Lower absolute ARG levels in dust were driven by, among others, summer season and certain bedding materials for poultry, and lower animal density and summer season for pigs. This study indicates different pathways that contribute to shaping the dust resistome in livestock farms, related to dust generation, or affecting the bacterial microbiome. Farm dust is a large reservoir of ARGs from which transmission to bacteria in other reservoirs can possibly occur. The identified determinants of ARG abundances in farm dust can guide future research and potentially farm management policy.


Subject(s)
Drug Resistance, Bacterial , Dust , Farms , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Bacterial/genetics , Dust/analysis , Europe , Swine
14.
Antibiotics (Basel) ; 10(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34356741

ABSTRACT

Food-producing animals are an important reservoir and potential source of transmission of antimicrobial resistance (AMR) to humans. However, research on AMR in turkey farms is limited. This study aimed to identify risk factors for AMR in turkey farms in three European countries (Germany, France, and Spain). Between 2014 and 2016, faecal samples, antimicrobial usage (AMU), and biosecurity information were collected from 60 farms. The level of AMR in faecal samples was quantified in three ways: By measuring the abundance of AMR genes through (i) shotgun metagenomics sequencing (n = 60), (ii) quantitative real-time polymerase chain reaction (qPCR) targeting ermB, tetW, sul2, and aph3'-III; (n = 304), and (iii) by identifying the phenotypic prevalence of AMR in Escherichia coli isolates by minimum inhibitory concentrations (MIC) (n = 600). The association between AMU or biosecurity and AMR was explored. Significant positive associations were detected between AMU and both genotypic and phenotypic AMR for specific antimicrobial classes. Beta-lactam and colistin resistance (metagenomics sequencing); ampicillin and ciprofloxacin resistance (MIC) were associated with AMU. However, no robust AMU-AMR association was detected by analyzing qPCR targets. In addition, no evidence was found that lower biosecurity increases AMR abundance. Using multiple complementary AMR detection methods added insights into AMU-AMR associations at turkey farms.

15.
Sci Rep ; 11(1): 15108, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301966

ABSTRACT

The emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Genome, Bacterial/genetics , Animals , Cattle , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Europe , Evolution, Molecular , Feces/microbiology , Genomics/methods , Microbial Sensitivity Tests/methods , Phylogeny , Poultry/microbiology , Red Meat/microbiology , Swine/microbiology , Virulence/genetics
16.
Microorganisms ; 9(5)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066739

ABSTRACT

Reptiles are considered a reservoir of a variety of Salmonella (S.) serovars. Nevertheless, due to a lack of large-scale research, the importance of Reptilia as a Salmonella vector still remains not completely recognized. A total of 731 samples collected from reptiles and their environment were tested. The aim of the study was to assess the prevalence of Salmonella in exotic reptiles kept in Poland and to confirm Salmonella contamination of the environment after reptile exhibitions. The study included Salmonella isolation and identification, followed by epidemiological analysis of the antimicrobial resistance of the isolates. Implementation of a pathway additional to the standard Salmonella isolation protocol led to a 21% increase in the Salmonella serovars detection rate. The study showed a high occurrence of Salmonella, being the highest at 92.2% in snakes, followed by lizards (83.7%) and turtles (60.0%). The pathogen was also found in 81.2% of swabs taken from table and floor surfaces after reptile exhibitions and in two out of three egg samples. A total of 918 Salmonella strains belonging to 207 serovars and serological variants were obtained. We have noted the serovars considered important with respect to public health, i.e., S. Enteritidis, S. Typhimurium, and S. Kentucky. The study proves that exotic reptiles in Poland are a relevant reservoir of Salmonella.

17.
Front Microbiol ; 12: 656223, 2021.
Article in English | MEDLINE | ID: mdl-33897669

ABSTRACT

Antimicrobial resistance (AMR) is one of the most important global health concerns; therefore, the identification of AMR reservoirs and vectors is essential. Attention should be paid to the recognition of potential hazards associated with wildlife as this field still seems to be incompletely explored. In this context, the role of free-living birds as AMR carriers is noteworthy. Therefore, we applied methods used in AMR monitoring, supplemented by colistin resistance screening, to investigate the AMR status of Escherichia coli from free-living birds coming from natural habitats and rescue centers. Whole-genome sequencing (WGS) of strains enabled to determine resistance mechanisms and investigate their epidemiological relationships and virulence potential. As far as we know, this study is one of the few that applied WGS of that number (n = 71) of strains coming from a wild avian reservoir. The primary concerns arising from our study relate to resistance and its determinants toward antimicrobial classes of the highest priority for the treatment of critical infections in people, e.g., cephalosporins, quinolones, polymyxins, and aminoglycosides, as well as fosfomycin. Among the numerous determinants, bla CTX-M-15, bla CMY-2, bla SHV-12, bla TEM-1B, qnrS1, qnrB19, mcr-1, fosA7, aac(3)-IIa, ant(3")-Ia, and aph(6)-Id and chromosomal gyrA, parC, and parE mutations were identified. Fifty-two sequence types (STs) noted among 71 E. coli included the global lineages ST131, ST10, and ST224 as well as the three novel STs 11104, 11105, and 11194. Numerous virulence factors were noted with the prevailing terC, gad, ompT, iss, traT, lpfA, and sitA. Single E. coli was Shiga toxin-producing. Our study shows that the clonal spread of E. coli lineages of public and animal health relevance is a serious avian-associated hazard.

18.
Int J Food Microbiol ; 337: 108956, 2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33189985

ABSTRACT

There has been an increase in the number of reports on Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) isolated from animals and humans. Recent studies using whole genome sequencing (WGS) have provided evidence on the likely contribution of a unique conjugative megaplasmid (pESI; ~280 kb) to the dissemination of this serovar worldwide. In the present study, twenty-two unrelated Salmonella strains [S. Infantis (n = 20) and Salmonella 6,7:r:- (n = 2)] and their plasmids were investigated using next generation sequencing technologies (MiSeq and MinION) to unravel the significant expansion of this bacteria in Turkey. Multi-locus sequence typing, plasmid replicons, resistance gene contents as well as phylogenetic relations between strains were determined. According to the WGS data, all S. Infantis possessed the relevant megaplasmid backbone genes and belonged to sequence type 32 (ST32) with the exception of a single novel ST7091. Tetracycline and trimethoprim/sulfamethoxazole resistance were found to be widespread in S. Infantis strains and the resistant strains exclusively carried the tetA, sul1, sul2 and dfrA14 genes. One S. Infantis isolate was also a carrier of the plasmid-mediated ampC via blaCMY-2, gene. Moreover, full genomes of four S. Infantis isolates were reconstructed based on hybrid assembly. All four strains contained large plasmids (240-290 kb) similar to previously published megaplasmid (pESI) and accompanied by several small plasmids. The megaplasmid backbone contained a toxin-antitoxin system, two virulence cassettes and segments associated with heavy metals resistance, while variable regions possessed several antibiotic resistance genes flanked by mobile elements. This study indicated that pESI-like megaplasmid is widely disseminated within the tested S. Infantis strains of chicken meat, warranting further genomic studies on clinical strains from humans and animals to uncover the overall emergence and spread of this serovar.


Subject(s)
Genome, Bacterial/genetics , Plasmids/genetics , Poultry/microbiology , Salmonella Infections, Animal/microbiology , Salmonella/genetics , Animals , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Food Microbiology , Phylogeny , Plasmids/drug effects , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella/pathogenicity , Salmonella Infections, Animal/epidemiology , Turkey/epidemiology , Virulence/genetics
19.
PLoS One ; 15(12): e0242987, 2020.
Article in English | MEDLINE | ID: mdl-33270717

ABSTRACT

Antimicrobial resistance (AMR) in bacteria is a complex subject, why one need to look at this phenomenon from a wider and holistic perspective. The extensive use of the same antimicrobial classes in human and veterinary medicine as well as horticulture is one of the main drivers for the AMR selection. Here, we applied shotgun metagenomics to investigate the AMR epidemiology in several animal species including farm animals, which are often exposed to antimicrobial treatment opposed to an unique set of wild animals that seems not to be subjected to antimicrobial pressure. The comparison of the domestic and wild animals allowed to investigate the possible anthropogenic impact on AMR spread. Inclusion of animals with different feeding behaviors (carnivores, omnivores) enabled to further assess which AMR genes that thrives within the food chain. We tested fecal samples not only of intensively produced chickens, turkeys, and pigs, but also of wild animals such as wild boars, red foxes, and rodents. A multi-directional approach mapping obtained sequences to several databases provided insight into the occurrence of the different AMR genes. The method applied enabled also analysis of other factors that may influence AMR of intestinal microbiome such as diet. Our findings confirmed higher levels of AMR in farm animals than in wildlife. The results also revealed the potential of wildlife in the AMR dissemination. Particularly in red foxes, we found evidence of several AMR genes conferring resistance to critically important antimicrobials like quinolones and cephalosporins. In contrast, the lowest abundance of AMR was observed in rodents originating from natural environment with presumed limited exposure to antimicrobials. Shotgun metagenomics enabled us to demonstrate that discrepancies between AMR profiles found in the intestinal microbiome of various animals probably resulted from the different antimicrobial exposure, habitats, and behavior of the tested animal species.


Subject(s)
Drug Resistance, Bacterial/genetics , Gastrointestinal Microbiome/genetics , Metagenome , Poultry/microbiology , Animal Feed , Animals , Animals, Wild , Foxes/microbiology , Plasmids , Poland , Rodentia/microbiology , Sus scrofa/microbiology
20.
J Vet Res ; 64(3): 387-390, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32984628

ABSTRACT

INTRODUCTION: The article describes the occurrence and phylogenetic relationship of Salmonella isolates found in subcutaneous abscesses of leopard geckos. The aim of the study was to determine the cause of the abscesses and to characterise isolated Salmonella strains. MATERIAL AND METHODS: Samples of abscesses from five animals and internal organs (lungs, liver, and gut) of three of them were tested for Salmonella according to the PN-EN ISO 6579:2002/A1:2007 standard. The antimicrobial resistance was evaluated by minimal inhibitory concentrations and the genetic similarity of the isolates was assessed with pulsed field gel electrophoresis (PFGE). RESULTS: In total, seventeen Salmonella isolates belonging to five different serovars were found to be susceptible to all tested antimicrobials except streptomycin. The serovars were S. Hadar, S. Fluntern, S. Tennessee, S. enterica subsp. salamae 55:k:z39, and S. Kentucky. Up to three serovars from different organs were isolated from the same individual. In two geckos, Salmonella were detected in the lungs. In three serovars, XbaI-PFGE typing revealed indistinguishable isolates from organs and abscesses. CONCLUSION: Multiple Salmonella serovars might be involved in abscess formation and infections. The occurrence of the same PFGE profiles of the isolates may testify to the role of opportunistic organisms in causing infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...