Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Biochem Biophys Res Commun ; 716: 149991, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704888

ABSTRACT

Cholera toxin (Ctx) is a major virulence factor produced by Vibrio cholerae that can cause gastrointestinal diseases, including severe watery diarrhea and dehydration, in humans. Ctx binds to target cells through multivalent interactions between its B-subunit pentamer and the receptor ganglioside GM1 present on the cell surface. Here, we identified a series of tetravalent peptides that specifically bind to the receptor-binding region of the B-subunit pentamer using affinity-based screening of multivalent random-peptide libraries. These tetravalent peptides efficiently inhibited not only the cell-elongation phenotype but also the elevated cAMP levels, both of which are induced by Ctx treatment in CHO cells or a human colon carcinoma cell line (Caco-2 cells), respectively. Importantly, one of these peptides, NRR-tet, which was highly efficient in these two activities, markedly inhibited fluid accumulation in the mouse ileum caused by the direct injection of Ctx. In consistent, NRR-tet reduced the extensive Ctx-induced damage of the intestinal villi. After NRR-tet bound to Ctx, the complex was incorporated into the cultured epithelial cells and accumulated in the recycling endosome, affecting the retrograde transport of Ctx from the endosome to the Golgi, which is an essential process for Ctx to exert its toxicity in cells. Thus, NRR-tet may be a novel type of therapeutic agent against cholera, which induces the aberrant transport of Ctx in the intestinal epithelial cells, detoxifying the toxin.


Subject(s)
Cholera Toxin , Cricetulus , Cholera Toxin/metabolism , Humans , Animals , Mice , CHO Cells , Caco-2 Cells , Peptides/pharmacology , Peptides/metabolism , Peptides/chemistry , Protein Transport/drug effects , Cholera/drug therapy , Cholera/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
2.
Commun Biol ; 6(1): 383, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37031306

ABSTRACT

Inhibition of amyloid-ß peptide (Aß) accumulation in the brain is a promising approach for treatment of Alzheimer's disease (AD). Aß is produced by ß-secretase and γ-secretase in endosomes via sequential proteolysis of amyloid precursor protein (APP). Aß and APP have a common feature to readily cluster to form multimers. Here, using multivalent peptide library screens, we identified a tetravalent peptide, LME-tet, which binds APP and Aß via multivalent interactions. In cells, LME-tet-bound APP in the plasma membrane is transported to endosomes, blocking Aß production through specific inhibition of ß-cleavage, but not γ-cleavage. LME-tet further suppresses Aß aggregation by blocking formation of the ß-sheet conformation. Inhibitory effects are not observed with a monomeric peptide, emphasizing the significance of multivalent interactions for mediating these activities. Critically, LME-tet efficiently reduces Aß levels in the brain of AD model mice, suggesting it may hold promise for treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Brain/metabolism , Cell Membrane/metabolism
3.
Cancer Gene Ther ; 30(7): 973-984, 2023 07.
Article in English | MEDLINE | ID: mdl-36932197

ABSTRACT

The tumor-elicited inflammation is closely related to tumor microenvironment during tumor progression. S100A8, an endogenous ligand of Toll-like receptor 4 (TLR4), is known as a key molecule in the tumor microenvironment and premetastatic niche formation. We firstly generated a novel multivalent S100A8 competitive inhibitory peptide (divalent peptide3A5) against TLR4/MD-2, using the alanine scanning. Divalent peptide3A5 suppressed S100A8-mediated interleukin-8 and vascular endothelial growth factor production in human colorectal tumor SW480 cells. Using SW480-transplanted xenograft models, divalent peptide3A5 suppressed tumor progression in a dose-dependent manner. We demonstrated that combination therapy with divalent peptide3A5 and bevacizumab synergistically suppressed tumor growth in SW480 xenograft models. Using syngeneic mouse models, we found that divalent peptide3A5 improved the efficacy of anti-programmed death (PD)1 antibody, and lung metastasis. In addition, by using multivalent peptide library screening based on peptide3A5, we then isolated two more candidates; divalent ILVIK, and tetravalent ILVIK. Of note, multivalent ILVIK, but not monovalent ILVIK showed competitive inhibitory activity against TLR4/MD-2 complex, and anti-tumoral activity in SW480 xenograft models. As most tumor cells including SW480 cells also express TLR4, S100A8 inhibitory peptides would target both the tumor microenvironment and tumor cells. Thus, multivalent S100A8 inhibitory peptides would provide new pharmaceutical options for aggressive cancers.


Subject(s)
Calgranulin B , Toll-Like Receptor 4 , Animals , Mice , Humans , Calgranulin B/metabolism , Vascular Endothelial Growth Factor A/metabolism , Calgranulin A/metabolism , Peptides/pharmacology , Peptides/metabolism
4.
Cell Mol Gastroenterol Hepatol ; 15(3): 533-558, 2023.
Article in English | MEDLINE | ID: mdl-36270602

ABSTRACT

BACKGROUND & AIMS: Hepatitis B virus (HBV) infection is difficult to cure owing to the persistence of covalently closed circular viral DNA (cccDNA). We performed single-cell transcriptome analysis of newly established HBV-positive and HBV-negative hepatocellular carcinoma cell lines and found that dedicator of cytokinesis 11 (DOCK11) was crucially involved in HBV persistence. However, the roles of DOCK11 in the HBV lifecycle have not been clarified. METHODS: The cccDNA levels were measured by Southern blotting and real-time detection polymerase chain reaction in various hepatocytes including PXB cells by using an HBV-infected model. The retrograde trafficking route of HBV capsid was investigated by super-resolution microscopy, proximity ligation assay, and time-lapse analysis. The downstream molecules of DOCK11 and underlying mechanism were examined by liquid chromatography-tandem mass spectrometry, immunoblotting, and enzyme-linked immunosorbent assay. RESULTS: The cccDNA levels were strongly increased by DOCK11 overexpression and repressed by DOCK11 suppression. Interestingly, DOCK11 functionally associated with retrograde trafficking proteins in the trans-Golgi network (TGN), Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with HBV capsid, to open an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. Clinically, DOCK11 levels in liver biopsies from patients with chronic hepatitis B were significantly reduced by entecavir treatment, and this reduction correlated with HBV surface antigen levels. CONCLUSIONS: HBV uses a retrograde trafficking route via EEs-TGN-ER for infection that is facilitated by DOCK11 and serves to maintain cccDNA. Therefore, DOCK11 is a potential therapeutic target to prevent persistent HBV infection.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus/genetics , trans-Golgi Network/metabolism , Hepatitis B/metabolism , Lysosomes/metabolism
5.
Biochem Biophys Res Commun ; 636(Pt 1): 178-183, 2022 12 25.
Article in English | MEDLINE | ID: mdl-36334442

ABSTRACT

Inhibition of osteoclast differentiation is a promising approach for the treatment of osteoporosis and rheumatoid arthritis. Receptor activator of nuclear factor kappa B (NF-κB) (RANK), which is an essential molecule for osteoclast differentiation, interacts with tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) to transduce downstream signals. Both RANK and TRAF6 have homo-trimeric structures, forming a multivalent interaction between the Pro-X-Glu-X-X-(aromatic/acidic) motif of RANK and the C-terminal domain of TRAF6 (TRAF-C), that markedly increases the binding affinity. Here, we designed a tetravalent peptide, RANK-tet, containing the TRAF-C-binding motif of RANK and found that RANK-tet binds to TRAF-C with high affinity. In contrast, a monomeric form of RANK-tet (RANK-mono) with the same TRAF-C-binding motif did not bind to TRAF-C, clearly indicating the multivalent interaction is strictly required for the high-affinity binding to TRAF-C. RANK-tet did not bind to a series of TRAF-C-mutants with an amino acid substitution in the RANK-binding region, indicating that RANK-tet specifically targets the RANK-binding region of TRAF-C. A cell-permeable form of RANK-tet that has poly-Arg residues at each C-terminal of the TRAF-C-binding motif efficiently inhibited the RANK ligand (RANKL)-induced differentiation of bone marrow cells to osteoclasts. Thus, this compound can be an effective anti-osteoclastogenic agent.


Subject(s)
RANK Ligand , TNF Receptor-Associated Factor 6 , TNF Receptor-Associated Factor 6/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , RANK Ligand/metabolism , Osteoclasts/metabolism , NF-kappa B/metabolism , Peptides/pharmacology , Peptides/metabolism , Cell Differentiation/physiology
6.
Biochem Biophys Res Commun ; 629: 95-100, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36115284

ABSTRACT

Subtilase cytotoxin (SubAB) is a major virulence factor produced by eae-negative Shiga-toxigenic Escherichia coli (STEC) that can cause fatal systemic complications. SubAB binds to target cells through multivalent interactions between its B-subunit pentamer and receptor molecules such as glycoproteins with a terminal N-glycolylneuraminic acid (Neu5Gc). We screened randomized multivalent peptide libraries synthesized on a cellulose membrane and identified a series of tetravalent peptides that efficiently bind to the receptor-binding region of the SubAB B-subunit pentamer. These peptides competitively inhibited the binding of the B-subunit to a receptor-mimic molecule containing clustered Neu5Gc (Neu5Gc-polymer). We selected the peptide with the highest inhibitory efficacy, FFP-tet, and covalently bound it to beads to synthesize FFP-tet-beads, a highly clustered SubAB absorber that displayed potency to absorb SubAB cytotoxicity through direct binding to the toxin. The efficacy of FFP-tet-beads to absorb SubAB cytotoxicity in solution was similar to that of Neu5Gc-polymer, suggesting that FFP-tet-beads might be an effective therapeutic agent against complications arising from eae-negative STEC infection.


Subject(s)
Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Carrier Proteins/metabolism , Cellulose/metabolism , Cytotoxins , Escherichia coli Proteins/metabolism , Peptide Library , Polymers/metabolism , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/metabolism , Subtilisins/toxicity , Virulence Factors/metabolism
7.
Sci Rep ; 12(1): 11443, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794188

ABSTRACT

Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), can cause fatal systemic complications. Recently, we identified a potent inhibitory peptide that binds to the catalytic A-subunit of Stx. Here, using biochemical structural analysis and X-ray crystallography, we determined a minimal essential peptide motif that occupies the catalytic cavity and is required for binding to the A-subunit of Stx2a, a highly virulent Stx subtype. Molecular dynamics simulations also identified the same motif and allowed determination of a unique pharmacophore for A-subunit binding. Notably, a series of synthetic peptides containing the motif efficiently inhibit Stx2a. In addition, pharmacophore screening and subsequent docking simulations ultimately identified nine Stx2a-interacting molecules out of a chemical compound database consisting of over 7,400,000 molecules. Critically, one of these molecules markedly inhibits Stx2a both in vitro and in vivo, clearly demonstrating the significance of the pharmacophore for identifying therapeutic agents against EHEC infection.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli Infections/drug therapy , Humans , Peptides/pharmacology , Receptors, Drug , Shiga Toxin , Shiga Toxin 2/metabolism
8.
Commun Biol ; 4(1): 538, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972673

ABSTRACT

Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli, which causes fatal systemic complications. Here, we identified a tetravalent peptide that inhibited Stx by targeting its receptor-binding, B-subunit pentamer through a multivalent interaction. A monomeric peptide with the same motif, however, did not bind to the B-subunit pentamer. Instead, the monomer inhibited cytotoxicity with remarkable potency by binding to the catalytic A-subunit. An X-ray crystal structure analysis to 1.6 Å resolution revealed that the monomeric peptide fully occupied the catalytic cavity, interacting with Glu167 and Arg170, both of which are essential for catalytic activity. Thus, the peptide motif demonstrated potent inhibition of two functionally distinct subunits of Stx.


Subject(s)
Cell Proliferation/drug effects , Peptide Fragments/pharmacology , Shiga Toxin/antagonists & inhibitors , Shiga Toxin/metabolism , Animals , Catalytic Domain , Chlorocebus aethiops , Crystallography, X-Ray , Peptide Fragments/chemistry , Protein Binding , Vero Cells
9.
Biochem Biophys Res Commun ; 557: 247-253, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33894410

ABSTRACT

Accumulation of amyloid-ß peptide (Aß) in neuronal cells and in the extracellular regions in the brain is a major cause of Alzheimer's disease (AD); therefore, inhibition of Aß accumulation offers a promising approach for therapeutic strategies against AD. Aß is produced by sequential proteolysis of amyloid precursor protein (APP) in late/recycling endosomes after endocytosis of APP located in the plasma membrane. Aß is then released from cells in a free form or in an exosome-bound form. Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli. Recently, we found that one of the Stx subtypes, Stx2a, has a unique intracellular transport route after endocytosis through its receptor-binding B-subunit. A part of Stx2a can be transported to late/recycling endosomes and then degraded in a lysosomal acidic compartment, although in general Stx is transported to the Golgi and then to the endoplasmic reticulum in a retrograde manner. In this study, we found that treatment of APP-expressing cells with a mutant Stx2a (mStx2a), lacking cytotoxic activity because of mutations in the catalytic A-subunit, stimulated the transport of APP to the acidic compartment, which led to degradation of APP and a reduction in the amount of Aß. mStx2a-treatment also inhibited the extracellular release of Aß. Therefore, mStx2a may provide a new strategy to inhibit the production of Aß by modulating the intracellular transport of APP.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Cell Membrane/drug effects , Endosomes/metabolism , Lysosomes/metabolism , Protein Transport/drug effects , Shiga Toxin 2/pharmacology , Animals , CHO Cells , Catalytic Domain/genetics , Cell Membrane/metabolism , Cell Survival/drug effects , Cricetulus , Globosides/chemistry , Humans , Mutation , Phosphatidylcholines/chemistry , Recombinant Proteins , Shiga Toxin 2/chemistry , Shiga Toxin 2/genetics , Trihexosylceramides/chemistry
10.
Nat Commun ; 11(1): 162, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31919357

ABSTRACT

The emergence of drug-resistant influenza type A viruses (IAVs) necessitates the development of novel anti-IAV agents. Here, we target the IAV hemagglutinin (HA) protein using multivalent peptide library screens and identify PVF-tet, a peptide-based HA inhibitor. PVF-tet inhibits IAV cytopathicity and propagation in cells by binding to newly synthesized HA, rather than to the HA of the parental virus, thus inducing the accumulation of HA within a unique structure, the inducible amphisome, whose production from the autophagosome is accelerated by PVF-tet. The amphisome is also produced in response to IAV infection in the absence of PVF-tet by cells overexpressing ABC transporter subfamily A3, which plays an essential role in the maturation of multivesicular endosomes into the lamellar body, a lipid-sorting organelle. Our results show that the inducible amphisomes can function as a type of organelle-based anti-viral machinery by sequestering HA. PVF-tet efficiently rescues mice from the lethality of IAV infection.


Subject(s)
Antiviral Agents/pharmacology , Hemagglutinins, Viral/metabolism , Influenza A virus/growth & development , Orthomyxoviridae Infections/prevention & control , Peptides/pharmacology , ATP-Binding Cassette Transporters/biosynthesis , Animals , Autophagosomes/metabolism , Dogs , Drug Evaluation, Preclinical/methods , Endosomes/metabolism , Female , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Peptide Library , Sf9 Cells , Spodoptera
11.
Bioorg Med Chem ; 26(22): 5792-5803, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30420327

ABSTRACT

Synthetic assembly of sugar moieties and amino acids in order to create "sugar-amino acid hybrid polymers" was accomplished by means of simple radical polymerization of carbohydrate monomers having an amino acid-modified polymerizable aglycon. Amines derived from globotriaoside and lactoside as glycoepitopes were condensed with known carbobenzyloxy derivatives, including Z-Gly, Z-l-Ala and Z-ß-Ala, which had appropriate spacer ability and a chiral center to afford fully protected sugar-amino acid hybrid compounds in good yields. After deprotection followed by acryloylation, the water-soluble glycomonomers were polymerized with or without acrylamide in the presence of a radical initiator in water to give corresponding copolymers and homopolymers, which were shown by SEC analysis to have high molecular weights. Evaluation of the biological activities of the glycopolymers against Shiga toxins (Stxs) was carried out, and the results suggested that glycopolymers having highly clustered globotriaosyl residues had high affinity against Stx2 (KD = 2.7∼4.0 µM) even though other glycopolymers did not show any affinity or showed very weak binding affinity. When Stx1 was used for the same assay, all of the glycopolymers having globotriaosyl residues showed high affinity (KD = 0.30∼1.74 µM). Interestingly, couple of glycopolymers having lactosyl moieties had weaker binding affinity against Stx1. In addition, when cytotoxicity assays were carried out for both Stxs, glycopolymers having highly clustered globotriaosyl residues showed higher affinity than that of the copolymers, and only highly clustered-type glycopolymers displayed neutralization potency against Stx2.


Subject(s)
Escherichia coli O157/metabolism , Polymers/pharmacology , Shiga Toxins/antagonists & inhibitors , Amino Acids/chemistry , Amino Acids/pharmacology , Amino Sugars/chemistry , Amino Sugars/pharmacology , Dose-Response Relationship, Drug , Escherichia coli O157/chemistry , Lactose/chemistry , Lactose/pharmacology , Molecular Structure , Polymers/chemical synthesis , Polymers/chemistry , Shiga Toxins/biosynthesis , Structure-Activity Relationship , Trisaccharides/chemistry , Trisaccharides/pharmacology
12.
Biol Pharm Bull ; 41(9): 1475-1479, 2018.
Article in English | MEDLINE | ID: mdl-30175782

ABSTRACT

Shiga toxin (Stx) is a main virulence factor of Enterohemorrhagic Escherichia coli (EHEC) that causes diarrhea and hemorrhagic colitis and occasionally fatal systemic complications. Stx induces rapid apoptotic cell death in some cells, such as human myelogenous leukemia THP-1 cells expressing CD77, a receptor for Stx internalization, and the induction of apoptotic cell death is thought to be crucial for the fatal systemic complications. Therefore, in order to suppress the fatal toxicity, it is important to understand the mechanism how cells can escape from apoptotic cell death in the presence of Stx. In this study, we isolated resistant clones to Stx-induced apoptosis from highly sensitive THP-1 cells by continuous exposure with lethal dose of Stx. All of the ten resistant clones lost the expression of CD77 as a consequence of the reduction in CD77 synthase mRNA expression. These results suggest that downregulation of CD77 or CD77 synthase expression could be a novel approach to suppress the fatal toxicity of Stx in EHEC infected patient.


Subject(s)
Galactosyltransferases/genetics , Leukemia, Myeloid/metabolism , Shiga Toxin 1/pharmacology , Shiga Toxin 2/pharmacology , Trihexosylceramides/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Etoposide/pharmacology , Humans , THP-1 Cells
13.
Sci Rep ; 8(1): 10776, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-30018364

ABSTRACT

Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), is classified into two subgroups, Stx1 and Stx2. Clinical data clearly indicate that Stx2 is associated with more severe toxicity than Stx1, but the molecular mechanism underlying this difference is not fully understood. Here, we found that after being incorporated into target cells, Stx2, can be transported by recycling endosomes, as well as via the regular retrograde transport pathway. However, transport via recycling endosome did not occur with Stx1. We also found that Stx2 is actively released from cells in a receptor-recognizing B-subunit dependent manner. Part of the released Stx2 is associated with microvesicles, including exosome markers (referred to as exo-Stx2), whose origin is in the multivesicular bodies that formed from late/recycling endosomes. Finally, intravenous administration of exo-Stx2 to mice causes more lethality and tissue damage, especially severe renal dysfunction and tubular epithelial cell damage, compared to a free form of Stx2. Thus, the formation of exo-Stx2 might contribute to the severity of Stx2 in vivo, suggesting new therapeutic strategies against EHEC infections.


Subject(s)
Exosomes/metabolism , Shiga Toxin 2/toxicity , Virulence Factors/toxicity , Animals , Biological Transport , Endosomes/metabolism , Kidney/drug effects , Mice , Shiga Toxin 2/metabolism , Virulence Factors/metabolism
14.
Genes Cells ; 23(1): 22-34, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29205725

ABSTRACT

Chronic myeloid leukemia (CML) is caused by the chimeric protein p210 BCR-ABL encoded by a gene on the Philadelphia chromosome. Although the kinase domain of p210 BCR-ABL is an active driver of CML, the pathological role of its pleckstrin homology (PH) domain remains unclear. Here, we carried out phospholipid vesicle-binding assays to show that cardiolipin (CL), a characteristic mitochondrial phospholipid, is a unique ligand of the PH domain. Arg726, a basic amino acid in the ligand-binding region, was crucial for ligand recognition. A subset of wild-type p210 BCR-ABL that was transiently expressed in HEK293 cells was dramatically translocated from the cytosol to mitochondria in response to carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment, which induces mitochondrial depolarization and subsequent externalization of CL to the organelle's outer membrane, whereas an R726A mutant of the protein was not translocated. Furthermore, only wild-type p210 BCR-ABL, but not the R726A mutant, suppressed CCCP-induced mitophagy and subsequently enhanced reactive oxygen species production. Thus, p210 BCR-ABL can change its intracellular localization via interactions between the PH domain and CL to cope with mitochondrial damage. This suggests that p210 BCR-ABL could have beneficial effects for cancer proliferation, providing new insight into the PH domain's contribution to CML pathogenesis.


Subject(s)
Cardiolipins/metabolism , Fusion Proteins, bcr-abl/metabolism , Mitochondria/pathology , Mitophagy/drug effects , Pleckstrin Homology Domains , Carbonyl Cyanide m-Chlorophenyl Hydrazone/analogs & derivatives , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Cytosol/metabolism , Fusion Proteins, bcr-abl/chemistry , Fusion Proteins, bcr-abl/genetics , HEK293 Cells , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Protein Transport
15.
Infect Immun ; 84(9): 2653-61, 2016 09.
Article in English | MEDLINE | ID: mdl-27382021

ABSTRACT

Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), can be classified into two subgroups, Stx1 and Stx2, each consisting of various closely related subtypes. Stx2 subtypes Stx2a and Stx2d are highly virulent and linked with serious human disorders, such as acute encephalopathy and hemolytic-uremic syndrome. Through affinity-based screening of a tetravalent peptide library, we previously developed peptide neutralizers of Stx2a in which the structure was optimized to bind to the B-subunit pentamer. In this study, we identified Stx2d-selective neutralizers by targeting Asn16 of the B subunit, an amino acid unique to Stx2d that plays an essential role in receptor binding. We synthesized a series of tetravalent peptides on a cellulose membrane in which the core structure was exactly the same as that of peptides in the tetravalent library. A total of nine candidate motifs were selected to synthesize tetravalent forms of the peptides by screening two series of the tetravalent peptides. Five of the tetravalent peptides effectively inhibited the cytotoxicity of Stx2a and Stx2d, and notably, two of the peptides selectively inhibited Stx2d. These two tetravalent peptides bound to the Stx2d B subunit with high affinity dependent on Asn16. The mechanism of binding to the Stx2d B subunit differed from that of binding to Stx2a in that the peptides covered a relatively wide region of the receptor-binding surface. Thus, this highly optimized screening technique enables the development of subtype-selective neutralizers, which may lead to more sophisticated treatments of infections by Stx-producing EHEC.


Subject(s)
Amino Acids/metabolism , Peptides/metabolism , Shiga Toxin 2/metabolism , Virulence Factors/metabolism , Animals , Cell Line , Cell Line, Tumor , Enterohemorrhagic Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Humans , Mice , Mice, Inbred C57BL , Peptide Library , Protein Binding/physiology , Vero Cells
16.
Genes Cells ; 21(8): 901-6, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27302278

ABSTRACT

Shiga toxin (Stx) is a main virulence factor of Stx-producing Escherichia coli (STEC) that contributes to diarrhea and hemorrhagic colitis and occasionally to fatal systemic complications. Therefore, the development of an antidote to neutralize Stx toxicity is urgently needed. After internalization into cells, Stx is transferred to the Golgi apparatus via a retrograde vesicular transport system. We report here that 2-methylcoprophilinamide (M-COPA), a compound that induces disassembly of the Golgi apparatus by inactivating ADP-ribosylation factor 1 (Arf1), suppresses Stx-induced apoptosis. M-COPA inhibited transport of Stx from the plasma membrane to the Golgi apparatus and suppressed degradation of anti-apoptotic proteins and the activation of caspases. These findings suggest that inhibition of Stx retrograde transport by M-COPA could be a novel approach to suppress Stx toxicity.


Subject(s)
ADP-Ribosylation Factor 1/genetics , Alkenes/pharmacology , Antidotes/pharmacology , Naphthols/administration & dosage , Pyridines/administration & dosage , Shiga Toxin/antagonists & inhibitors , Shiga-Toxigenic Escherichia coli/drug effects , ADP-Ribosylation Factor 1/antagonists & inhibitors , Alkenes/chemistry , Antidotes/chemistry , Apoptosis/drug effects , Apoptosis/genetics , Colitis/drug therapy , Colitis/microbiology , Diarrhea/drug therapy , Diarrhea/microbiology , Golgi Apparatus/drug effects , Humans , Shiga Toxin/toxicity , Shiga-Toxigenic Escherichia coli/pathogenicity
17.
FEBS Open Bio ; 5: 605-14, 2015.
Article in English | MEDLINE | ID: mdl-26273560

ABSTRACT

Shiga toxin (Stx) causes fatal systemic complications. Stx induces apoptosis, but the mechanism of which is unclear. We report that Stx induced rapid reduction of short-lived anti-apoptotic proteins followed by activation of caspase 9 and the progression of apoptosis. Proteasome inhibitors prevented the reduction of anti-apoptotic proteins, and inhibited caspase activation and apoptosis, suggesting that the reduction of anti-apoptotic proteins is a prerequisite for Stx-induced apoptosis. A clinically approved proteasome inhibitor, bortezomib, prolonged the survival of mice challenged by Stx. These results imply that proteasome inhibition may be a novel approach to prevent the fatal effects of Stx.

18.
PLoS One ; 10(7): e0131668, 2015.
Article in English | MEDLINE | ID: mdl-26147860

ABSTRACT

We employed a multivalent peptide-library screening technique to identify a peptide motif that binds to phosphatidic acid (PA), but not to other phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). A tetravalent peptide with the sequence motif of MARWHRHHH, designated as PAB-TP (phosphatidic acid-binding tetravalent peptide), was shown to bind as low as 1 mol% of PA in the bilayer membrane composed of PC and cholesterol. Kinetic analysis of the interaction between PAB-TP and the membranes containing 10 mol% of PA showed that PAB-TP associated with PA with a low dissociation constant of KD = 38 ± 5 nM. Coexistence of cholesterol or PE with PA in the membrane enhanced the PAB-TP binding to PA by increasing the ionization of the phosphomonoester head group as well as by changing the microenvironment of PA molecules in the membrane. Amino acid replacement analysis demonstrated that the tryptophan residue at position 4 of PAB-TP was involved in the interaction with PA. Furthermore, a series of amino acid substitutions at positions 5 to 9 of PAB-TP revealed the involvement of consecutive histidine and arginine residues in recognition of the phosphomonoester head group of PA. Our results demonstrate that the recognition of PA by PAB-TP is achieved by a combination of hydrophobic, electrostatic and hydrogen-bond interactions, and that the tetravalent structure of PAB-TP contributes to the high affinity binding to PA in the membrane. The novel PA-binding tetravalent peptide PAB-TP will provide insight into the molecular mechanism underlying the recognition of PA by PA-binding proteins that are involved in various cellular events.


Subject(s)
Peptides/metabolism , Phosphatidic Acids/metabolism , Amino Acid Substitution/physiology , Hydrogen Bonding , Kinetics , Membranes/metabolism , Peptide Library , Static Electricity , Tryptophan/metabolism
19.
Appl Environ Microbiol ; 81(3): 1092-100, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25452283

ABSTRACT

Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli, binds to target cells through a multivalent interaction between its B-subunit pentamer and the cell surface receptor globotriaosylceramide, resulting in a remarkable increase in its binding affinity. This phenomenon is referred to as the "clustering effect." Previously, we developed a multivalent peptide library that can exert the clustering effect and identified Stx neutralizers with tetravalent peptides by screening this library for high-affinity binding to the specific receptor-binding site of the B subunit. However, this technique yielded only a limited number of binding motifs, with some redundancy in amino acid selectivity. In this study, we established a novel technique to synthesize up to 384 divalent peptides whose structures were customized to exert the clustering effect on the B subunit on a single cellulose membrane. By targeting Stx1a, a major Stx subtype, the customized divalent peptides were screened to identify high-affinity binding motifs. The sequences of the peptides were designed based on information obtained from the multivalent peptide library technique. A total of 64 candidate motifs were successfully identified, and 11 of these were selected to synthesize tetravalent forms of the peptides. All of the synthesized tetravalent peptides bound to the B subunit with high affinities and effectively inhibited the cytotoxicity of Stx1a in Vero cells. Thus, the combination of the two techniques results in greatly improved efficiency in identifying biologically active neutralizers of Stx.


Subject(s)
Antidotes/isolation & purification , Antidotes/metabolism , Peptides/isolation & purification , Peptides/metabolism , Shiga Toxin/antagonists & inhibitors , Shiga Toxin/metabolism , Animals , Antidotes/chemical synthesis , Cell Survival/drug effects , Chlorocebus aethiops , Peptides/chemical synthesis , Protein Binding , Vero Cells
20.
Nat Commun ; 4: 2529, 2013.
Article in English | MEDLINE | ID: mdl-24108142

ABSTRACT

Understanding the substrate recognition mechanism of γ-secretase is a key step for establishing substrate-specific inhibition of amyloid ß-protein (Aß) production. However, it is widely believed that γ-secretase is a promiscuous protease and that its substrate-specific inhibition is elusive. Here we show that γ-secretase distinguishes the ectodomain length of substrates and preferentially captures and cleaves substrates containing a short ectodomain. We also show that a subset of peptides containing the CDCYCxxxxCxCxSC motif binds to the amino terminus of C99 and inhibits Aß production in a substrate-specific manner. Interestingly, these peptides suppress ß-secretase-dependent cleavage of APP, but not that of sialyltransferase 1. Most importantly, intraperitoneal administration of peptides into mice results in a significant reduction in cerebral Aß levels. This report provides direct evidence of the substrate preference of γ-secretase and its mechanism. Our results demonstrate that the ectodomain of C99 is a potent target for substrate-specific anti-Aß therapeutics to combat Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Protein Precursor/chemistry , Brain/metabolism , Peptides/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amino Acid Sequence , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Binding Sites , Brain/drug effects , Brain/pathology , CHO Cells , Cricetulus , Gene Expression , HEK293 Cells , Humans , Injections, Intraperitoneal , Male , Mice , Molecular Sequence Data , Peptides/genetics , Peptides/pharmacology , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Sialyltransferases/genetics , Sialyltransferases/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...