Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
J Gen Virol ; 105(5)2024 05.
Article in English | MEDLINE | ID: mdl-38757942

ABSTRACT

Since its discovery in 1965, our understanding of the hepatitis B virus (HBV) replication cycle and host immune responses has increased markedly. In contrast, our knowledge of the molecular biology of hepatitis delta virus (HDV), which is associated with more severe liver disease, is less well understood. Despite the progress made, critical gaps remain in our knowledge of HBV and HDV replication and the mechanisms underlying viral persistence and evasion of host immunity. The International HBV Meeting is the leading annual scientific meeting for presenting the latest advances in HBV and HDV molecular virology, immunology, and epidemiology. In 2023, the annual scientific meeting was held in Kobe, Japan and this review summarises some of the advances presented at the Meeting and lists gaps in our knowledge that may facilitate the development of new therapies.


Subject(s)
Hepatitis B virus , Hepatitis B , Hepatitis Delta Virus , Virus Replication , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Hepatitis B virus/immunology , Humans , Hepatitis Delta Virus/genetics , Hepatitis Delta Virus/physiology , Hepatitis B/virology , Hepatitis B/immunology , Molecular Biology , Japan , Hepatitis D/virology , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics
2.
Commun Biol ; 7(1): 535, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710842

ABSTRACT

Escherichia coli O157 can cause foodborne outbreaks, with infection leading to severe disease such as hemolytic-uremic syndrome. Although phage-based detection methods for E. coli O157 are being explored, research on their specificity with clinical isolates is lacking. Here, we describe an in vitro assembly-based synthesis of vB_Eco4M-7, an O157 antigen-specific phage with a 68-kb genome, and its use as a proof of concept for E. coli O157 detection. Linking the detection tag to the C-terminus of the tail fiber protein, gp27 produces the greatest detection sensitivity of the 20 insertions sites tested. The constructed phage detects all 53 diverse clinical isolates of E. coli O157, clearly distinguishing them from 35 clinical isolates of non-O157 Shiga toxin-producing E. coli. Our efficient phage synthesis methods can be applied to other pathogenic bacteria for a variety of applications, including phage-based detection and phage therapy.


Subject(s)
Escherichia coli O157 , Escherichia coli O157/virology , Escherichia coli O157/genetics , Escherichia coli O157/isolation & purification , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/diagnosis , Bacteriophages/genetics , Bacteriophages/isolation & purification , Coliphages/genetics , Coliphages/isolation & purification , Sensitivity and Specificity , Genome, Viral
3.
Biodes Res ; 6: 0028, 2024.
Article in English | MEDLINE | ID: mdl-38516182

ABSTRACT

The global increase in the prevalence of drug-resistant bacteria has necessitated the development of alternative treatments that do not rely on conventional antimicrobial agents. Using bacteriophage-derived lytic enzymes in antibacterial therapy shows promise; however, a thorough comparison and evaluation of their bactericidal efficacy are lacking. This study aimed to compare and investigate the bactericidal activity and spectrum of such lytic enzymes, with the goal of harnessing them for antibacterial therapy. First, we examined the bactericidal activity of spanins, endolysins, and holins derived from 2 Escherichia coli model phages, T1 and T7. Among these, T1-spanin exhibited the highest bactericidal activity against E. coli. Subsequently, we expressed T1-spanin within bacterial cells and assessed its bactericidal activity. T1-spanin showed potent bactericidal activity against all clinical isolates tested, including bacterial strains of 111 E. coli, 2 Acinetobacter spp., 3 Klebsiella spp., and 3 Pseudomonas aeruginosa. In contrast, T1 phage-derived endolysin showed bactericidal activity against E. coli and P. aeruginosa, yet its efficacy against other bacteria was inferior to that of T1-spanin. Finally, we developed a phage-based technology to introduce the T1-spanin gene into target bacteria. The synthesized non-proliferative phage exhibited strong antibacterial activity against the targeted bacteria. The potent bactericidal activity exhibited by spanins, combined with the novel phage synthetic technology, holds promise for the development of innovative antimicrobial agents.

4.
PLoS Comput Biol ; 20(3): e1011238, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466770

ABSTRACT

Chronic infection with hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. Thus, quantifying and understanding the dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, such study requires repeated liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because liver biopsy is potentially morbid and not common during hepatitis B treatment. We here aimed to develop a noninvasive method for quantifying cccDNA in the liver using surrogate markers in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations, integrates experimental data from in vitro and in vivo investigations. By applying this model, we roughly predicted the amount and dynamics of intrahepatic cccDNA within a certain range using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The noninvasive quantification of cccDNA using our proposed method holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens/genetics , DNA, Viral/genetics , Hepatitis B/drug therapy , Hepatitis B/pathology , Liver/pathology , DNA, Circular , Biomarkers , Antiviral Agents/therapeutic use
6.
Org Biomol Chem ; 22(11): 2218-2225, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38358380

ABSTRACT

Chronic infection with hepatitis B virus (HBV) is a major cause of cirrhosis and liver cancer. Capsid assembly modulators can induce error-prone assembly of HBV core proteins to prevent the formation of infectious virions, representing promising candidates for treating chronic HBV infections. To explore novel capsid assembly modulators from unexplored mirror-image libraries of natural products, we have investigated the synthetic process of the HBV core protein for preparing the mirror-image target protein. In this report, the chemical synthesis of full-length HBV core protein (Cp183) containing an arginine-rich nucleic acid-binding domain at the C-terminus is presented. Sequential ligations using four peptide segments enabled the synthesis of Cp183 via convergent and C-to-N direction approaches. After refolding under appropriate conditions, followed by the addition of nucleic acid, the synthetic Cp183 assembled into capsid-like particles.


Subject(s)
Hepatitis B , Nucleic Acids , Humans , Capsid/chemistry , Capsid Proteins/metabolism , Hepatitis B virus , Hepatitis B/metabolism , Viral Core Proteins/analysis , Viral Core Proteins/chemistry , Viral Core Proteins/metabolism , Virus Replication , Antiviral Agents/metabolism
7.
NEJM Evid ; 3(3): EVIDoa2300290, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38411447

ABSTRACT

Mpox Neutralizing Antibody Response to LC16m8 VaccineIn this study of 50 healthy volunteers in Japan, a smallpox vaccine (LC16m8) exhibited a robust neutralizing antibody response against two strains of the mpox virus. With a 94% "take" rate by day 14, seroconversion rates on day 28 were 72 and 70% against the Zr599 and Liberia strains, respectively, decreasing to 30% for both on day 168; no serious adverse events occurred.


Subject(s)
Mpox (monkeypox) , Smallpox Vaccine , Vaccines , Adult , Humans , Antibodies, Neutralizing , Antigens, Viral
8.
Nat Struct Mol Biol ; 31(3): 447-454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233573

ABSTRACT

Hepatitis B virus (HBV), a leading cause of developing hepatocellular carcinoma affecting more than 290 million people worldwide, is an enveloped DNA virus specifically infecting hepatocytes. Myristoylated preS1 domain of the HBV large surface protein binds to the host receptor sodium-taurocholate cotransporting polypeptide (NTCP), a hepatocellular bile acid transporter, to initiate viral entry. Here, we report the cryogenic-electron microscopy structure of the myristoylated preS1 (residues 2-48) peptide bound to human NTCP. The unexpectedly folded N-terminal half of the peptide embeds deeply into the outward-facing tunnel of NTCP, whereas the C-terminal half formed extensive contacts on the extracellular surface. Our findings reveal an unprecedented induced-fit mechanism for establishing high-affinity virus-host attachment and provide a blueprint for the rational design of anti-HBV drugs targeting virus entry.


Subject(s)
Hepatitis B virus , Symporters , Humans , Hepatitis B virus/genetics , Hepatocytes/metabolism , Protein Binding , Virus Attachment , Peptides/metabolism , Symporters/metabolism , Virus Internalization
9.
Hepatol Commun ; 7(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38051537

ABSTRACT

BACKGROUND: HBV DNA integration into the host genome is frequently found in HBV-associated HCC tissues and is associated with hepatocarcinogenesis. Multiple detection methods, including hybrid capture-sequencing, have identified integration sites and provided clinical implications; however, each has advantages and disadvantages concerning sensitivity, cost, and throughput. Therefore, methods that can comprehensively and cost-effectively detect integration sites with high sensitivity are required. Here, we investigated the efficiency of RAISING (Rapid Amplification of Integration Site without Interference by Genomic DNA contamination) as a simple and inexpensive method to detect viral integration by amplifying HBV-integrated fragments using virus-specific primers covering the entire HBV genome. METHODS AND RESULTS: Illumina sequencing of RAISING products from HCC-derived cell lines (PLC/PRF/5 and Hep3B cells) identified HBV-human junction sequences as well as their frequencies. The HBV-human junction profiles identified using RAISING were consistent with those determined using hybrid capture-sequencing, and the representative junctions could be validated by junction-specific nested PCR. The comparison of these detection methods revealed that RAISING-sequencing outperforms hybrid capture-sequencing in concentrating junction sequences. RAISING-sequencing was also demonstrated to determine the sites of de novo integration in HBV-infected HepG2-NTCP cells, primary human hepatocytes, liver-humanized mice, and clinical specimens. Furthermore, we made use of xenograft mice subcutaneously engrafted with PLC/PRF/5 or Hep3B cells, and HBV-human junctions determined by RAISING-sequencing were detectable in the plasma cell-free DNA using droplet digital PCR. CONCLUSIONS: RAISING successfully profiles HBV-human junction sequences with smaller amounts of sequencing data and at a lower cost than hybrid capture-sequencing. This method is expected to aid basic HBV integration and clinical diagnosis research.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Hepatitis B virus/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , DNA, Viral/genetics , Hepatocytes/metabolism
10.
Chem Pharm Bull (Tokyo) ; 71(11): 843-845, 2023.
Article in English | MEDLINE | ID: mdl-37914261

ABSTRACT

Juglorubin is a natural dye isolated from the culture of Streptomyces sp. 3094, 815, and GW4184. It has been previously synthesized via the biomimetic dimerization of juglomycin C, a plausible genetic precursor. In this study, the derivatives of juglorubin, 1-O-acetyljuglorubin dimethyl ester and juglorubin dimethyl ester, were found to exhibit antiviral activity against hepatitis C virus (HCV) without exerting any remarkable cytotoxicity against host Huh-7 cells. They also inhibited liver X receptor α activation and lipid droplet accumulation in Huh-7 cells. These findings suggest that 1-O-acetyljuglorubin dimethyl ester and juglorubin dimethyl ester targeted the host factors required for HCV production.


Subject(s)
Hepacivirus , Hepatitis C , Humans , Hepacivirus/genetics , Cell Line , Esters , Virus Replication , Antiviral Agents/pharmacology
11.
J Virol ; 97(10): e0128723, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37800948

ABSTRACT

IMPORTANCE: The Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is one of the most important defense mechanisms against oxidative stress. We previously reported that a cellular hydrogen peroxide scavenger protein, peroxiredoxin 1, a target gene of transcription factor Nrf2, acts as a novel HBV X protein (HBx)-interacting protein and negatively regulates hepatitis B virus (HBV) propagation through degradation of HBV RNA. This study further demonstrates that the Nrf2/ARE signaling pathway is activated during HBV infection, eventually leading to the suppression of HBV replication. We provide evidence suggesting that Keap1 interacts with HBx, leading to Nrf2 activation and inhibition of HBV replication via suppression of HBV core promoter activity. This study raises the possibility that activation of the Nrf2/ARE signaling pathway is a potential therapeutic strategy against HBV. Our findings may contribute to an improved understanding of the negative regulation of HBV replication by the antioxidant response.


Subject(s)
Hepatitis B virus , Hepatitis B , Kelch-Like ECH-Associated Protein 1 , Signal Transduction , Virus Replication , Humans , Antioxidant Response Elements , Hepatitis B/genetics , Hepatitis B virus/physiology , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress
12.
J Fungi (Basel) ; 9(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37755013

ABSTRACT

Coronavirus disease 2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therapeutic agents for the disease are being developed. Endophytes are diverse and produce various secondary metabolites and bioactive substances. We isolated 13 endophytes from the leaves and stems of Artemisia vulgaris. Antiviral testing using the culture extracts of these endophytic fungi revealed that five isolates effectively inhibited the replication of SARS-CoV-2. These extracts were used to study the inhibitory effect of SARS-CoV-2 on 3C-like protease, and two isolates proved useful. Both isolates were from the genus Colletotrichum; therefore, the percentage of Artemisia endophytic fungi in the plant tissue was observed to be an important factor in plant site selection. Thus, we conducted a macroanalysis using next-generation sequencing to analyze the percentage of endophytes in the stems (whole, skin, and inner), leaves, roots, and cultivating soil, as well as to determine the location of each genus. To the best of our knowledge, this study is the first to report that Colletotrichum spp. are abundant in stems and that stem-based methods are the most efficient for isolating endophytes targeting Colletotrichum spp.

13.
Microbiol Spectr ; 11(4): e0056623, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37409948

ABSTRACT

Mpox virus (formerly monkeypox virus [MPXV]) is a neglected zoonotic pathogen that caused a worldwide outbreak in May 2022. Given the lack of an established therapy, the development of an anti-MPXV strategy is of vital importance. To identify drug targets for the development of anti-MPXV agents, we screened a chemical library using an MPXV infection cell assay and found that gemcitabine, trifluridine, and mycophenolic acid (MPA) inhibited MPXV propagation. These compounds showed broad-spectrum anti-orthopoxvirus activities and presented lower 90% inhibitory concentrations (0.026 to 0.89 µM) than brincidofovir, an approved anti-smallpox agent. These three compounds have been suggested to target the postentry step to reduce the intracellular production of virions. Knockdown of IMP dehydrogenase (IMPDH), the rate-limiting enzyme of guanosine biosynthesis and a target of MPA, dramatically reduced MPXV DNA production. Moreover, supplementation with guanosine recovered the anti-MPXV effect of MPA, suggesting that IMPDH and its guanosine biosynthetic pathway regulate MPXV replication. By targeting IMPDH, we identified a series of compounds with stronger anti-MPXV activity than MPA. This evidence shows that IMPDH is a potential target for the development of anti-MPXV agents. IMPORTANCE Mpox is a zoonotic disease caused by infection with the mpox virus, and a worldwide outbreak occurred in May 2022. The smallpox vaccine has recently been approved for clinical use against mpox in the United States. Although brincidofovir and tecovirimat are drugs approved for the treatment of smallpox by the U.S. Food and Drug Administration, their efficacy against mpox has not been established. Moreover, these drugs may present negative side effects. Therefore, new anti-mpox virus agents are needed. This study revealed that gemcitabine, trifluridine, and mycophenolic acid inhibited mpox virus propagation and exhibited broad-spectrum anti-orthopoxvirus activities. We also suggested IMP dehydrogenase as a potential target for the development of anti-mpox virus agents. By targeting this molecule, we identified a series of compounds with stronger anti-mpox virus activity than mycophenolic acid.


Subject(s)
Monkeypox virus , Mycophenolic Acid , Guanosine/pharmacology , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Mycophenolic Acid/pharmacology , Trifluridine , Monkeypox virus/drug effects
14.
Biochem Biophys Res Commun ; 675: 139-145, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37473528

ABSTRACT

Given that the current approved anti-hepatitis B virus (HBV) drugs suppress virus replication and improve hepatitis but cannot eliminate HBV from infected patients, new anti-HBV agents with different mode of action are urgently needed. In this study, we identified a semi-synthetic oxysterol, Oxy185, that can prevent HBV infection in a HepG2-based cell line and primary human hepatocytes. Mechanistically, Oxy185 inhibited the internalization of HBV into cells without affecting virus attachment or replication. We also found that Oxy185 interacted with an HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP), and inhibited the oligomerization of NTCP to reduce the efficiency of HBV internalization. Consistent with this mechanism, Oxy185 also inhibited the hepatitis D virus infection, which relies on NTCP-dependent internalization, but not hepatitis A virus infection, and displayed pan-genotypic anti-HBV activity. Following oral administration in mice, Oxy185 showed sustained accumulation in the livers of the mice, along with a favorable liver-to-plasma ratio. Thus, Oxy185 is expected to serve as a useful tool compound in proof-of-principle studies for HBV entry inhibitors with this novel mode of action.


Subject(s)
Hepatitis B , Symporters , Humans , Mice , Animals , Hepatitis B virus/physiology , Virus Internalization , Hepatitis B/metabolism , Hepatocytes/metabolism , Hep G2 Cells , Hepatitis Delta Virus/metabolism , Symporters/metabolism , Organic Anion Transporters, Sodium-Dependent/metabolism
15.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333409

ABSTRACT

Chronic infection of hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. The quantifying and understanding dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, it requires a liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because of the ethical aspect. We here aimed to develop a non-invasive method for quantifying cccDNA in the liver using surrogate markers present in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations (PDEs), integrates experimental data from in vitro and in vivo investigations. By applying this model, we successfully predicted the amount and dynamics of intrahepatic cccDNA using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The non-invasive quantification of cccDNA using our proposed methodology holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.

16.
Liver Int ; 43(8): 1677-1690, 2023 08.
Article in English | MEDLINE | ID: mdl-37312620

ABSTRACT

BACKGROUND AND AIMS: The future development of hepatocellular carcinoma (HCC) in patients after sustained virologic response (SVR) is an important issue. The purposes of this study were to investigate pathological alterations in organelle of the liver of SVR patients and to characterize organelle abnormalities that may be related to carcinogenesis after SVR. METHODS: The ultrastructure of liver biopsy specimens from patients with chronic hepatitis C (CHC) and SVR were compared to cell and mouse models and assessed semi-quantitatively using transmission electron microscopy. RESULTS: Hepatocytes in patients with CHC showed abnormalities in the nucleus, mitochondria, endoplasmic reticulum, lipid droplet, and pericellular fibrosis, comparable to those seen in hepatitis C virus (HCV)-infected mice and cells. DAA treatment significantly reduced organelle abnormalities such as the nucleus, mitochondria, and lipid droplet in the hepatocytes of patients and mice after SVR, and cured cells, but it did not change dilated/degranulated endoplasmic reticulum and pericellular fibrosis in patients and mice after SVR. Further, samples from patients with a post-SVR period of >1 year had significantly larger numbers of abnormalities in the mitochondria and endoplasmic reticulum than those of <1 year. A possible cause of organelle abnormalities in patients after SVR could be oxidative stress of the endoplasmic reticulum and mitochondria associated with abnormalities of the vascular system due to fibrosis. Interestingly, abnormal endoplasmic reticulum was associated with patients with HCC for >1 year after SVR. CONCLUSIONS: These results indicate that patients with SVR exhibit a persistent disease state and require long-term follow-up to detect early signs of carcinogenesis.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C, Chronic , Hepatitis C , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/pathology , Antiviral Agents/therapeutic use , Liver Neoplasms/pathology , Hepacivirus , Hepatitis C/drug therapy , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , Sustained Virologic Response , Liver Cirrhosis/complications , Organelles/pathology , Carcinogenesis/pathology
17.
Chem Pharm Bull (Tokyo) ; 71(8): 650-654, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37245988

ABSTRACT

Although aryl hydrocarbon receptors (AhRs) are related to the metabolic pathway of xenobiotics, recent studies have revealed that this receptor is also associated with the life cycle of viruses and inflammatory reactions. For example, flutamide, used to treat prostate cancer, inhibits hepatitis C virus proliferation by acting as an AhR antagonist, and methylated-pelargonidin, an AhR agonist, suppresses pro-inflammatory cytokine production. To discover a novel class of AhR ligands, we screened 1000 compounds derived from fungal metabolites using a reporter assay and identified methylsulochrin as a partial agonist of the aryl hydrocarbon receptor. Methylsulochrin was found to inhibit the production of hepatitis C virus (HCV) in Huh-7.5.1 cells. Methylsulochrin also suppressed the production of interleukin-6 in RAW264.7 cells. Furthermore, a preliminary structure-activity relationship study using sulochrin derivatives was performed. Our findings suggest the use of methylsulochrin derivatives as anti-HCV compounds with anti-inflammatory activity.


Subject(s)
Antiviral Agents , Receptors, Aryl Hydrocarbon , Male , Humans , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Antiviral Agents/pharmacology , Flutamide/pharmacology , Anti-Inflammatory Agents/pharmacology , Ligands
18.
PLoS Pathog ; 19(5): e1011323, 2023 05.
Article in English | MEDLINE | ID: mdl-37134108

ABSTRACT

The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Acyltransferases/antagonists & inhibitors , Antiviral Agents/pharmacology , SARS-CoV-2 , T-Lymphocytes
19.
Microbiol Spectr ; 11(3): e0431122, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37140398

ABSTRACT

Nelfinavir, an orally administered inhibitor of human immunodeficiency virus protease, inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We conducted a randomized controlled trial to evaluate the clinical efficacy and safety of nelfinavir in patients with SARS-CoV-2 infection. We included unvaccinated asymptomatic or mildly symptomatic adult patients who tested positive for SARS-CoV-2 infection within 3 days before enrollment. The patients were randomly assigned (1:1) to receive oral nelfinavir (750 mg; thrice daily for 14 days) combined with standard-of-care or standard-of-care alone. The primary endpoint was the time to viral clearance, confirmed using quantitative reverse-transcription PCR by assessors blinded to the assigned treatment. A total of 123 patients (63 in the nelfinavir group and 60 in the control group) were included. The median time to viral clearance was 8.0 (95% confidence interval [CI], 7.0 to 12.0) days in the nelfinavir group and 8.0 (95% CI, 7.0 to 10.0) days in the control group, with no significant difference between the treatment groups (hazard ratio, 0.815; 95% CI, 0.563 to 1.182; P = 0.1870). Adverse events were reported in 47 (74.6%) and 20 (33.3%) patients in the nelfinavir and control groups, respectively. The most common adverse event in the nelfinavir group was diarrhea (49.2%). Nelfinavir did not reduce the time to viral clearance in this setting. Our findings indicate that nelfinavir should not be recommended in asymptomatic or mildly symptomatic patients infected with SARS-CoV-2. The study is registered with the Japan Registry of Clinical Trials (jRCT2071200023). IMPORTANCE The anti-HIV drug nelfinavir suppresses the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. However, its efficacy in patients with COVID-19 has not been studied. We conducted a multicenter, randomized controlled trial to evaluate the efficacy and safety of orally administered nelfinavir in patients with asymptomatic or mildly symptomatic COVID-19. Compared to standard-of-care alone, nelfinavir (750 mg, thrice daily) did not reduce the time to viral clearance, viral load, or the time to resolution of symptoms. More patients had adverse events in the nelfinavir group than in the control group (74.6% [47/63 patients] versus 33.3% [20/60 patients]). Our clinical study provides evidence that nelfinavir, despite its antiviral effects on SARS-CoV-2 in vitro, should not be recommended for the treatment of patients with COVID-19 having no or mild symptoms.


Subject(s)
Anti-HIV Agents , COVID-19 , Adult , Humans , SARS-CoV-2 , Nelfinavir/adverse effects , Time Factors , Treatment Outcome
20.
J Infect Dis ; 228(5): 591-603, 2023 08 31.
Article in English | MEDLINE | ID: mdl-36892247

ABSTRACT

BACKGROUND: Mpox virus (MPXV) is a zoonotic orthopoxvirus and caused an outbreak in 2022. Although tecovirimat and brincidofovir are approved as anti-smallpox drugs, their effects in mpox patients have not been well documented. In this study, by a drug repurposing approach, we identified potential drug candidates for treating mpox and predicted their clinical impacts by mathematical modeling. METHODS: We screened 132 approved drugs using an MPXV infection cell system. We quantified antiviral activities of potential drug candidates by measuring intracellular viral DNA and analyzed the modes of action by time-of-addition assay and electron microscopic analysis. We further predicted the efficacy of drugs under clinical concentrations by mathematical simulation and examined combination treatment. RESULTS: Atovaquone, mefloquine, and molnupiravir exhibited anti-MPXV activity, with 50% inhibitory concentrations of 0.51-5.2 µM, which was more potent than cidofovir. Whereas mefloquine was suggested to inhibit viral entry, atovaquone and molnupiravir targeted postentry processes. Atovaquone was suggested to exert its activity through inhibiting dihydroorotate dehydrogenase. Combining atovaquone with tecovirimat enhanced the anti-MPXV effect of tecovirimat. Quantitative mathematical simulations predicted that atovaquone can promote viral clearance in patients by 7 days at clinically relevant drug concentrations. CONCLUSIONS: These data suggest that atovaquone would be a potential candidate for treating mpox.


Subject(s)
Mefloquine , Monkeypox virus , Humans , Atovaquone/pharmacology , Atovaquone/therapeutic use , Mefloquine/pharmacology , Mefloquine/therapeutic use , Monkeypox virus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...