Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Genome Biol ; 25(1): 185, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004763

ABSTRACT

BACKGROUND: We recently identified ~ 10,000 correlated regions of systemic interindividual epigenetic variation (CoRSIVs) in the human genome. These methylation variants are amenable to population studies, as DNA methylation measurements in blood provide information on epigenetic regulation throughout the body. Moreover, establishment of DNA methylation at human CoRSIVs is labile to periconceptional influences such as nutrition. Here, we analyze publicly available whole-genome bisulfite sequencing data on multiple tissues of each of two Holstein cows to determine whether CoRSIVs exist in cattle. RESULTS: Focusing on genomic blocks with ≥ 5 CpGs and a systemic interindividual variation index of at least 20, our approach identifies 217 cattle CoRSIVs, a subset of which we independently validate by bisulfite pyrosequencing. Similar to human CoRSIVs, those in cattle are strongly associated with genetic variation. Also as in humans, we show that establishment of DNA methylation at cattle CoRSIVs is particularly sensitive to early embryonic environment, in the context of embryo culture during assisted reproduction. CONCLUSIONS: Our data indicate that CoRSIVs exist in cattle, as in humans, suggesting these systemic epigenetic variants may be common to mammals in general. To the extent that individual epigenetic variation at cattle CoRSIVs affects phenotypic outcomes, assessment of CoRSIV methylation at birth may become an important tool for optimizing agriculturally important traits. Moreover, adjusting embryo culture conditions during assisted reproduction may provide opportunities to tailor agricultural outcomes by engineering CoRSIV methylation profiles.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Cattle , Animals , Humans , CpG Islands , Genetic Variation
2.
Genome Biol ; 24(1): 2, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36631879

ABSTRACT

BACKGROUND: Genetic variants can modulate phenotypic outcomes via epigenetic intermediates, for example at methylation quantitative trait loci (mQTL). We present the first large-scale assessment of mQTL at human genomic regions selected for interindividual variation in CpG methylation, which we call correlated regions of systemic interindividual variation (CoRSIVs). These can be assayed in blood DNA and do not reflect interindividual variation in cellular composition. RESULTS: We use target-capture bisulfite sequencing to assess DNA methylation at 4086 CoRSIVs in multiple tissues from each of 188 donors in the NIH Gene-Tissue Expression (GTEx) program. At CoRSIVs, DNA methylation in peripheral blood correlates with methylation and gene expression in internal organs. We also discover unprecedented mQTL at these regions. Genetic influences on CoRSIV methylation are extremely strong (median R2=0.76), cumulatively comprising over 70-fold more human mQTL than detected in the most powerful previous study. Moreover, mQTL beta coefficients at CoRSIVs are highly skewed (i.e., the major allele predicts higher methylation). Both surprising findings are independently validated in a cohort of 47 non-GTEx individuals. Genomic regions flanking CoRSIVs show long-range enrichments for LINE-1 and LTR transposable elements; the skewed beta coefficients may therefore reflect evolutionary selection of genetic variants that promote their methylation and silencing. Analyses of GWAS summary statistics show that mQTL polymorphisms at CoRSIVs are associated with metabolic and other classes of disease. CONCLUSIONS: A focus on systemic interindividual epigenetic variants, clearly enhanced in mQTL content, should likewise benefit studies attempting to link human epigenetic variation to the risk of disease.


Subject(s)
DNA Transposable Elements , Gene Expression Regulation , Humans , DNA Methylation , Quantitative Trait Loci , CpG Islands , Epigenesis, Genetic
3.
Sci Adv ; 8(39): eabo3991, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36170368

ABSTRACT

Recent genome-wide association studies corroborate classical research on developmental programming indicating that obesity is primarily a neurodevelopmental disease strongly influenced by nutrition during critical ontogenic windows. Epigenetic mechanisms regulate neurodevelopment; however, little is known about their role in establishing and maintaining the brain's energy balance circuitry. We generated neuron and glia methylomes and transcriptomes from male and female mouse hypothalamic arcuate nucleus, a key site for energy balance regulation, at time points spanning the closure of an established critical window for developmental programming of obesity risk. We find that postnatal epigenetic maturation is markedly cell type and sex specific and occurs in genomic regions enriched for heritability of body mass index in humans. Our results offer a potential explanation for both the limited ontogenic windows for and sex differences in sensitivity to developmental programming of obesity and provide a rich resource for epigenetic analyses of developmental programming of energy balance.


Subject(s)
Arcuate Nucleus of Hypothalamus , Hypothalamus , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Body Mass Index , Epigenesis, Genetic , Epigenomics , Female , Genome-Wide Association Study , Humans , Hypothalamus/metabolism , Male , Mice , Obesity/genetics , Obesity/metabolism
4.
Sci Adv ; 7(45): eabj1561, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739318

ABSTRACT

PAX8 is a key thyroid transcription factor implicated in thyroid gland differentiation and function, and PAX8 gene methylation is reported to be sensitive to the periconceptional environment. Using a novel recall-by-epigenotype study in Gambian children, we found that PAX8 hypomethylation at age 2 years is associated with a 21% increase in thyroid volume and an increase in free thyroxine (T4) at 5 to 8 years, the latter equivalent to 8.4% of the normal range. Free T4 was associated with a decrease in DXA-derived body fat and bone mineral density. Furthermore, offspring PAX8 methylation was associated with periconceptional maternal nutrition, and methylation variability was influenced by genotype, suggesting that sensitivity to environmental exposures may be under partial genetic control. Together, our results demonstrate a possible link between early environment, PAX8 gene methylation and thyroid gland development and function, with potential implications for early embryonic programming of thyroid-related health and disease.

5.
Transl Psychiatry ; 11(1): 412, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34341337

ABSTRACT

Epigenetic dysregulation is thought to contribute to the etiology of schizophrenia (SZ), but the cell type-specificity of DNA methylation makes population-based epigenetic studies of SZ challenging. To train an SZ case-control classifier based on DNA methylation in blood, therefore, we focused on human genomic regions of systemic interindividual epigenetic variation (CoRSIVs), a subset of which are represented on the Illumina Human Methylation 450K (HM450) array. HM450 DNA methylation data on whole blood of 414 SZ cases and 433 non-psychiatric controls were used as training data for a classification algorithm with built-in feature selection, sparse partial least squares discriminate analysis (SPLS-DA); application of SPLS-DA to HM450 data has not been previously reported. Using the first two SPLS-DA dimensions we calculated a "risk distance" to identify individuals with the highest probability of SZ. The model was then evaluated on an independent HM450 data set on 353 SZ cases and 322 non-psychiatric controls. Our CoRSIV-based model classified 303 individuals as cases with a positive predictive value (PPV) of 80%, far surpassing the performance of a model based on polygenic risk score (PRS). Importantly, risk distance (based on CoRSIV methylation) was not associated with medication use, arguing against reverse causality. Risk distance and PRS were positively correlated (Pearson r = 0.28, P = 1.28 × 10-12), and mediational analysis suggested that genetic effects on SZ are partially mediated by altered methylation at CoRSIVs. Our results indicate two innate dimensions of SZ risk: one based on genetic, and the other on systemic epigenetic variants.


Subject(s)
DNA Methylation , Schizophrenia , Case-Control Studies , Epigenesis, Genetic , Humans , Machine Learning , Schizophrenia/genetics
6.
Obes Sci Pract ; 7(1): 63-70, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33680493

ABSTRACT

BACKGROUND: Early childhood (0-3 years) is a critical period for obesity prevention, when tendencies in eating behaviors and physical activity are established. Yet, little is understood about how the environment shapes children's genetic predisposition for these behaviors during this time. The Baylor Infant Twin Study (BITS) is a two phase study, initiated to study obesity risk factors from infancy. Data collection has been completed for Phase 1 in which three sub-studies pilot central measures for Phase 2. A novel infant temperament assessment, based on observations made by trained researchers was piloted in Behavior Observation Pilot Protocol (BOPP) study, a new device for measuring infant feeding parameters (the "orometer") in the Baylor Infant Orometer (BIO), and methods for analyzing DNA methylation in twins of unknown chorionicity in EpiTwin. METHODS: EpiTwin was a cross-sectional study of neonatal twins, while up to three study visits occurred for the other studies, at 4- (BOPP, BIO), 6- (BOPP), and 12- (BOPP, BIO) of age. Measurements for BOPP and BIO included temperament observations, feeding observations, and body composition assessments while EpiTwin focused on collecting samples of hair, urine, nails, and blood for quantifying methylation levels at 10 metastable epialleles. Additional data collected include demographic information, zygosity, chorionicity, and questionnaire-based measures of infant behaviors. RESULTS: Recruitment for all three studies was completed in early 2020. EpiTwin recruited 80 twin pairs (50% monochorionic), 31 twin pairs completed the BOPP protocol, and 68 singleton infants participated in BIO. CONCLUSIONS: The psychometric properties of the data from all three studies are being analyzed currently. The resulting findings will inform the development of the full BITS protocol, with the goal of completing assessments at 4-, 6-, 12-, and 14-month of age for 400 twin pairs.

7.
Environ Res ; 194: 110668, 2021 03.
Article in English | MEDLINE | ID: mdl-33387539

ABSTRACT

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are persistent organic pollutants which may alter prenatal development, potentially through epigenetic modifications. Prior studies examining PFOS/PFOA and DNA methylation have relatively few subjects (n < 200) and inconsistent results. We examined relations of PFOA/PFOS with DNA methylation among 597 neonates in the Upstate KIDS cohort study. PFOA/PFOS were quantified in newborn dried blood spots (DBS) using high-performance liquid chromatography/tandem mass spectrometry. DNA methylation was measured using the Infinium MethylationEPIC BeadChip with DNA extracted from DBS. Robust linear regression was used to examine the associations of PFOA/PFOS with DNA methylation at individual CpG sites. Covariates included sample plate, estimated cell type, epigenetically derived ancestry, infant sex and plurality, indicators of maternal socioeconomic status, and prior pregnancy loss. In supplemental analysis, we restricted the analysis to 2242 CpG sites previously identified as Correlated Regions of Systemic Interindividual Variation (CoRSIVs) which include metastable epialleles. At FDR<0.05, PFOA concentration >90th percentile was related to DNA methylation at cg15557840, near SCRT2, SRXN1; PFOS>90th percentile was related to 2 CpG sites in a sex-specific manner (cg19039925 in GVIN1 in boys and cg05754408 in ZNF26 in girls). When analysis was restricted to CoRSIVs, log-scaled, continuous PFOS concentration was related to DNA methylation at cg03278866 within PTBP1. In conclusion, there was limited evidence of an association between high concentrations of PFOA/PFOS and DNA methylation in newborn DBS in the Upstate KIDS cohort. These findings merit replication in populations with a higher median concentration of PFOA/PFOS.


Subject(s)
Alkanesulfonic Acids , DNA Methylation , Fluorocarbons , Alkanesulfonic Acids/analysis , Caprylates , Cohort Studies , Dried Blood Spot Testing , Female , Fluorocarbons/analysis , Heterogeneous-Nuclear Ribonucleoproteins , Humans , Infant, Newborn , Male , Polypyrimidine Tract-Binding Protein , Pregnancy
8.
Genome Biol ; 21(1): 156, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32605651

ABSTRACT

BACKGROUND: The traditional approach to studying the epigenetic mechanism CpG methylation in tissue samples is to identify regions of concordant differential methylation spanning multiple CpG sites (differentially methylated regions). Variation limited to single or small numbers of CpGs has been assumed to reflect stochastic processes. To test this, we developed software, Cluster-Based analysis of CpG methylation (CluBCpG), and explored variation in read-level CpG methylation patterns in whole genome bisulfite sequencing data. RESULTS: Analysis of both human and mouse whole genome bisulfite sequencing datasets reveals read-level signatures associated with cell type and cell type-specific biological processes. These signatures, which are mostly orthogonal to classical differentially methylated regions, are enriched at cell type-specific enhancers and allow estimation of proportional cell composition in synthetic mixtures and improved prediction of gene expression. In tandem, we developed a machine learning algorithm, Precise Read-Level Imputation of Methylation (PReLIM), to increase coverage of existing whole genome bisulfite sequencing datasets by imputing CpG methylation states on individual sequencing reads. PReLIM both improves CluBCpG coverage and performance and enables identification of novel differentially methylated regions, which we independently validate. CONCLUSIONS: Our data indicate that, rather than stochastic variation, read-level CpG methylation patterns in tissue whole genome bisulfite sequencing libraries reflect cell type. Accordingly, these new computational tools should lead to an improved understanding of epigenetic regulation by DNA methylation.


Subject(s)
Cells/metabolism , Computational Biology/methods , DNA Methylation , Software , Whole Genome Sequencing , Adult , Aged , Animals , CpG Islands , Female , Gene Expression , Humans , Machine Learning , Male , Mice , Organ Specificity
9.
Adv Nutr ; 11(4): 1032-1041, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32584399

ABSTRACT

Recovery from nutritionally induced height deficits continues to garner attention. The current literature on catch-up growth, however, has 2 important limitations: wide-ranging definitions of catch-up growth are used, and it remains unclear whether children can recover from the broader consequences of undernutrition. We addressed these shortcomings by reviewing the literature on the criteria for catch-up in linear growth and on the potential to recover from undernutrition early in life in 3 domains: linear growth, developmental epigenetics, and child brain and neurocognitive development. Four criteria must be met to demonstrate catch-up growth in height: after a period in which a growth-inhibiting condition (criterion 1) causes a reduction in linear growth velocity (criterion 2), alleviation of the inhibiting condition (criterion 3) leads to higher-than-normal velocity (criterion 4). Accordingly, studies that are observational, do not use absolute height, or have no alleviation of an inhibiting condition cannot be used to establish catch-up growth. Adoption and foster care, which provide dramatic improvements in children's living conditions not typically attained in nutrition interventions, led to some (but incomplete) recovery in linear growth and brain and neurocognitive development. Maternal nutrition around the time of conception was shown to have long-term (potentially permanent) effects on DNA methylation in the offspring. Undernourishment early in life may thus have profound irreversible effects. Scientific, program, and policy efforts should focus on preventing maternal and child undernutrition rather than on correcting its consequences or attempting to prove they can be corrected.


Subject(s)
Child Nutrition Disorders , Malnutrition , Body Height , Brain , Child , Child Development , Epigenesis, Genetic , Female , Humans
10.
Nat Commun ; 10(1): 5364, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792207

ABSTRACT

DNA methylation regulates cell type-specific gene expression. Here, in a transgenic mouse model, we show that deletion of the gene encoding DNA methyltransferase Dnmt3a in hypothalamic AgRP neurons causes a sedentary phenotype characterized by reduced voluntary exercise and increased adiposity. Whole-genome bisulfite sequencing (WGBS) and transcriptional profiling in neuronal nuclei from the arcuate nucleus of the hypothalamus (ARH) reveal differentially methylated genomic regions and reduced expression of AgRP neuron-associated genes in knockout mice. We use read-level analysis of WGBS data to infer putative ARH neural cell types affected by the knockout, and to localize promoter hypomethylation and increased expression of the growth factor Bmp7 to AgRP neurons, suggesting a role for aberrant TGF-ß signaling in the development of this phenotype. Together, these data demonstrate that DNA methylation in AgRP neurons is required for their normal epigenetic development and neuron-specific gene expression profiles, and regulates voluntary exercise behavior.


Subject(s)
DNA Methylation , Neurons/metabolism , Physical Conditioning, Animal , Adiposity , Animals , Behavior, Animal , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Female , Hypothalamus/cytology , Hypothalamus/metabolism , Male , Mice , Mice, Knockout , Signal Transduction
12.
Environ Epigenet ; 5(3): dvz015, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31528363

ABSTRACT

Pancreatic islets of type 2 diabetes patients have altered DNA methylation, contributing to islet dysfunction and the onset of type 2 diabetes. The cause of these epigenetic alterations is largely unknown. We set out to test whether (i) islet DNA methylation would change with aging and (ii) early postnatal overnutrition would persistently alter DNA methylation. We performed genome-scale DNA methylation profiling in islets from postnatally over-nourished (suckled in a small litter) and control male mice at both postnatal day 21 and postnatal day 180. DNA methylation differences were validated using quantitative bisulfite pyrosequencing, and associations with expression were assessed by RT-PCR. We discovered that genomic regions that are hypermethylated in exocrine relative to endocrine pancreas tend to gain methylation in islets during aging (R 2 = 0.33, P < 0.0001). These methylation differences were inversely correlated with mRNA expression of genes relevant to ß cell function [including Rab3b (Ras-related protein Rab-3B), Cacnb3 (voltage-dependent L-type calcium channel subunit 3), Atp2a3 (sarcoplasmic/endoplasmic reticulum calcium ATPase 3) and Ins2 (insulin 2)]. Relative to control, small litter islets showed DNA methylation differences directly after weaning and in adulthood, but few of these were present at both ages. Surprisingly, we found substantial overlap of methylated loci caused by aging and small litter feeding, suggesting that the age-associated gain of DNA methylation happened much earlier in small litter islets than control islets. Our results provide the novel insights that aging-associated DNA methylation increases reflect an epigenetic drift toward the exocrine pancreas epigenome, and that early postnatal overnutrition may accelerate this process.

13.
JCI Insight ; 52019 07 02.
Article in English | MEDLINE | ID: mdl-31265437

ABSTRACT

Hormones produced by the anterior pituitary gland regulate an array of important physiological functions, but pituitary hormone disorders are not fully understood. Herein we report that genetically-engineered mice with deletion of the hedgehog signaling receptor Patched1 by S100a4 promoter-driven Cre recombinase (S100a4-Cre;Ptch1fl/fl mutants) exhibit adult-onset hypogonadotropic hypogonadism and multiple pituitary hormone disorders. During the transition from puberty to adult, S100a4-Cre;Ptch1fl/fl mice of both sexes develop hypogonadism coupled with reduced gonadotropin levels. Their pituitary glands also display severe structural and functional abnormalities, as revealed by transmission electron microscopy and expression of key genes regulating pituitary endocrine functions. S100a4-Cre activity in the anterior pituitary gland is restricted to CD45+ cells of hematopoietic origin, including folliculo-stellate cells and other immune cell types, causing sex-specific changes in the expression of genes regulating the local microenvironment of the anterior pituitary. These findings provide in vivo evidence for the importance of pituitary hematopoietic cells in regulating fertility and endocrine function, in particular during sexual maturation and likely through sexually dimorphic mechanisms. These findings support a previously unrecognized role of hematopoietic cells in causing hypogonadotropic hypogonadism and provide inroads into the molecular and cellular basis for pituitary hormone disorders in humans.


Subject(s)
Hypogonadism/metabolism , Integrases/metabolism , Patched-1 Receptor/metabolism , Pituitary Gland/metabolism , S100 Calcium-Binding Protein A4/metabolism , Animals , Epididymis/pathology , Female , Humans , Hypogonadism/genetics , Hypogonadism/pathology , Male , Mice , Mice, Knockout , Ovary/pathology , Patched-1 Receptor/genetics , Pituitary Gland, Anterior/metabolism , Reproduction/physiology , Seminal Vesicles/pathology , Sexual Maturation , Signal Transduction , Testis , Testosterone/blood , Uterus/pathology
14.
Genome Biol ; 20(1): 105, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31155008

ABSTRACT

BACKGROUND: DNA methylation is thought to be an important determinant of human phenotypic variation, but its inherent cell type specificity has impeded progress on this question. At exceptional genomic regions, interindividual variation in DNA methylation occurs systemically. Like genetic variants, systemic interindividual epigenetic variants are stable, can influence phenotype, and can be assessed in any easily biopsiable DNA sample. We describe an unbiased screen for human genomic regions at which interindividual variation in DNA methylation is not tissue-specific. RESULTS: For each of 10 donors from the NIH Genotype-Tissue Expression (GTEx) program, CpG methylation is measured by deep whole-genome bisulfite sequencing of genomic DNA from tissues representing the three germ layer lineages: thyroid (endoderm), heart (mesoderm), and brain (ectoderm). We develop a computational algorithm to identify genomic regions at which interindividual variation in DNA methylation is consistent across all three lineages. This approach identifies 9926 correlated regions of systemic interindividual variation (CoRSIVs). These regions, comprising just 0.1% of the human genome, are inter-correlated over long genomic distances, associated with transposable elements and subtelomeric regions, conserved across diverse human ethnic groups, sensitive to periconceptional environment, and associated with genes implicated in a broad range of human disorders and phenotypes. CoRSIV methylation in one tissue can predict expression of associated genes in other tissues. CONCLUSIONS: In addition to charting a previously unexplored molecular level of human individuality, this atlas of human CoRSIVs provides a resource for future population-based investigations into how interindividual epigenetic variation modulates risk of disease.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Genome, Human , Aged , Brain/metabolism , Case-Control Studies , Child , Disease/genetics , Female , Gambia , Genetic Variation , Humans , Male , Middle Aged , Myocardium/metabolism , Pregnancy , Prenatal Nutritional Physiological Phenomena , Seasons , Thyroid Gland/metabolism
15.
Sci Adv ; 4(7): eaat2624, 2018 07.
Article in English | MEDLINE | ID: mdl-30009262

ABSTRACT

The molecular mechanisms responsible for the developmental origins of later disease are currently unknown. We previously demonstrated that women's periconceptional nutrition predicts their offspring's DNA methylation at metastable epialleles (MEs). We present a genome-wide screen yielding 687 MEs and track their trajectories across nine developmental stages in human in vitro fertilization embryos. MEs exhibit highly unusual methylation dynamics across the implantation-gastrulation transition, producing a large excess of intermediate methylation states, suggesting the potential for differential programming in response to external signals. Using a natural experiment in rural Gambia, we show that genomic regions sensitive to season of conception are highly enriched for MEs and show similar atypical methylation patterns. MEs are enriched for proximal enhancers and transcription start sites and are influenced by genotype. Together, these observations position MEs as distinctive epigenomic features programmed in the early embryo, sensitive to genetic and periconceptional environment, and with the potential to influence phenotype.


Subject(s)
DNA Methylation , Embryo, Mammalian/metabolism , Adult , Binding Sites , Child, Preschool , CpG Islands , Embryonic Development , Female , Fertilization in Vitro , Humans , Intestine, Small/metabolism , Liver/metabolism , Male , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Exome Sequencing
16.
Genome Biol ; 19(1): 2, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29310692

ABSTRACT

BACKGROUND: Monozygotic twins have long been studied to estimate heritability and explore epigenetic influences on phenotypic variation. The phenotypic and epigenetic similarities of monozygotic twins have been assumed to be largely due to their genetic identity. RESULTS: Here, by analyzing data from a genome-scale study of DNA methylation in monozygotic and dizygotic twins, we identified genomic regions at which the epigenetic similarity of monozygotic twins is substantially greater than can be explained by their genetic identity. This "epigenetic supersimilarity" apparently results from locus-specific establishment of epigenotype prior to embryo cleavage during twinning. Epigenetically supersimilar loci exhibit systemic interindividual epigenetic variation and plasticity to periconceptional environment and are enriched in sub-telomeric regions. In case-control studies nested in a prospective cohort, blood DNA methylation at these loci years before diagnosis is associated with risk of developing several types of cancer. CONCLUSIONS: These results establish a link between early embryonic epigenetic development and adult disease. More broadly, epigenetic supersimilarity is a previously unrecognized phenomenon that may contribute to the phenotypic similarity of monozygotic twins.


Subject(s)
Epigenesis, Genetic , Twins, Monozygotic/genetics , CpG Islands , DNA/blood , DNA Methylation , Genome, Human , Humans , Models, Genetic , Neoplasms/genetics , Twins, Dizygotic
17.
Int J Cancer ; 142(5): 874-882, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28836271

ABSTRACT

The interaction between the (epi)genetic makeup of an individual and his/her environmental exposure record (exposome) is accepted as a determinant factor for a significant proportion of human malignancies. Recent evidence has highlighted the key role of epigenetic mechanisms in mediating gene-environment interactions and translating exposures into tumorigenesis. There is also growing evidence that epigenetic changes may be risk factor-specific ("fingerprints") that should prove instrumental in the discovery of new biomarkers in cancer. Here, we review the state of the science of epigenetics associated with environmental stimuli and cancer risk, highlighting key developments in the field. Critical knowledge gaps and research needs are discussed and advances in epigenomics that may help in understanding the functional relevance of epigenetic alterations. Key elements required for causality inferences linking epigenetic changes to exposure and cancer are discussed and how these alterations can be incorporated in carcinogen evaluation and in understanding mechanisms underlying epigenome deregulation by the environment.


Subject(s)
Environmental Exposure/adverse effects , Epigenesis, Genetic , Epigenomics , Gene-Environment Interaction , Neoplasms/etiology , Animals , DNA Methylation , Humans , Neoplasms/pathology , Risk Factors
18.
Physiol Biochem Zool ; 90(1): 1-14, 2017.
Article in English | MEDLINE | ID: mdl-28051947

ABSTRACT

Locomotion is a defining characteristic of animal life and plays a crucial role in most behaviors. Locomotion involves physical activity, which can have far-reaching effects on physiology and neurobiology, both acutely and chronically. In human populations and in laboratory rodents, higher levels of physical activity are generally associated with positive health outcomes, although excessive exercise can have adverse consequences. Whether and how such relationships occur in wild animals is unknown. Behavioral variation among individuals arises from genetic and environmental factors and their interactions as well as from developmental programming (persistent effects of early-life environment). Although tremendous progress has been made in identifying genetic and environmental influences on individual differences in behavior, early-life effects are not well understood. Early-life effects can in some cases persist across multiple generations following a single exposure and, in principle, may constrain or facilitate the rate of evolution at multiple levels of biological organization. Understanding the mechanisms of such transgenerational effects (e.g., exposure to stress hormones in utero, inherited epigenetic alterations) may prove crucial to explaining unexpected and/or sex-specific responses to selection as well as limits to adaptation. One area receiving increased attention is early-life effects on adult physical activity. Correlational data from epidemiological studies suggest that early-life nutritional stress can (adversely) affect adult human activity levels and associated physiological traits (e.g., body composition, metabolic health). The few existing studies of laboratory rodents demonstrate that both maternal and early-life exercise can affect adult levels of physical activity and related phenotypes. Going forward, rodents offer many opportunities for experimental studies of (multigenerational) early-life effects, including studies that use maternal exposures and cross-fostering designs.


Subject(s)
Aging/physiology , Motor Activity/physiology , Animals , Behavior, Animal , Conservation of Natural Resources , Environment , Epigenesis, Genetic , Feedback, Physiological , Human Activities , Motor Activity/genetics
19.
Environ Epigenet ; 3(1): dvw026, 2017 Jan.
Article in English | MEDLINE | ID: mdl-29492302

ABSTRACT

The US chapter of the International Developmental Origins of Health and Disease (DOHaD) Society recently held its inaugural meeting in Detroit, MI. US-based DOHaD researchers gathered both to create this new society chapter and share their latest research. The US DOHaD Society will provide a much-needed domestic forum for a broad range of DOHaD topics including nutrition, toxicology, stress, epidemiology, epigenetics, and more.

20.
Cell Metab ; 24(3): 502-509, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27568547

ABSTRACT

The estimated heritability of human BMI is close to 75%, but identified genetic variants explain only a small fraction of interindividual body-weight variation. Inherited epigenetic variants identified in mouse models named "metastable epialleles" could in principle explain this "missing heritability." We provide evidence that methylation in a variably methylated region (VMR) in the pro-opiomelanocortin gene (POMC), particularly in postmortem human laser-microdissected melanocyte-stimulating hormone (MSH)-positive neurons, is strongly associated with individual BMI. Using cohorts from different ethnic backgrounds, including a Gambian cohort, we found evidence suggesting that methylation of the POMC VMR is established in the early embryo and that offspring methylation correlates with the paternal somatic methylation pattern. Furthermore, it is associated with levels of maternal one-carbon metabolites at conception and stable during postnatal life. Together, these data suggest that the POMC VMR may be a human metastable epiallele that influences body-weight regulation.


Subject(s)
Alleles , DNA Methylation/genetics , Obesity/genetics , Pro-Opiomelanocortin/genetics , Adult , Biomarkers/blood , Body Weight , Carbon/metabolism , Cohort Studies , CpG Islands/genetics , Female , Genetic Variation , Humans , Leukocytes, Mononuclear/metabolism , Male , Melanocyte-Stimulating Hormones/metabolism , Middle Aged , Obesity/blood , Pregnancy , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL