Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Nat Chem Biol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937657
2.
Cell Rep ; 42(10): 113260, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37851575

ABSTRACT

Mechanisms that prevent accidental activation of the PINK1/Parkin mitophagy circuit on healthy mitochondria are poorly understood. On the surface of damaged mitochondria, PINK1 accumulates and acts as the input signal to a positive feedback loop of Parkin recruitment, which in turn promotes mitochondrial degradation via mitophagy. However, PINK1 is also present on healthy mitochondria, where it could errantly recruit Parkin and thereby activate this positive feedback loop. Here, we explore emergent properties of the PINK1/Parkin circuit by quantifying the relationship between mitochondrial PINK1 concentrations and Parkin recruitment dynamics. We find that Parkin is recruited to mitochondria only if PINK1 levels exceed a threshold and then only after a delay that is inversely proportional to PINK1 levels. Furthermore, these two regulatory properties arise from the input-coupled positive feedback topology of the PINK1/Parkin circuit. These results outline an intrinsic mechanism by which the PINK1/Parkin circuit can avoid errant activation on healthy mitochondria.


Subject(s)
Mitophagy , Protein Kinases , Ubiquitin-Protein Ligases , Mitochondria/metabolism , Mitophagy/physiology , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Humans , HeLa Cells , Feedback, Physiological
3.
Cell Rep ; 42(5): 112447, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37141099

ABSTRACT

Parkinson's disease-causing leucine-rich repeat kinase 2 (LRRK2) mutations lead to varying degrees of Rab GTPase hyperphosphorylation. Puzzlingly, LRRK2 GTPase-inactivating mutations-which do not affect intrinsic kinase activity-lead to higher levels of cellular Rab phosphorylation than kinase-activating mutations. Here, we investigate whether mutation-dependent differences in LRRK2 cellular localization could explain this discrepancy. We discover that blocking endosomal maturation leads to the rapid formation of mutant LRRK2+ endosomes on which LRRK2 phosphorylates substrate Rabs. LRRK2+ endosomes are maintained through positive feedback, which mutually reinforces membrane localization of LRRK2 and phosphorylated Rab substrates. Furthermore, across a panel of mutants, cells expressing GTPase-inactivating mutants form strikingly more LRRK2+ endosomes than cells expressing kinase-activating mutants, resulting in higher total cellular levels of phosphorylated Rabs. Our study suggests that the increased probability that LRRK2 GTPase-inactivating mutants are retained on intracellular membranes compared to kinase-activating mutants leads to higher substrate phosphorylation.


Subject(s)
Protein Serine-Threonine Kinases , rab GTP-Binding Proteins , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Mutation/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
4.
Cell ; 168(1-2): 150-158.e10, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28041849

ABSTRACT

Bacterial CRISPR-Cas systems utilize sequence-specific RNA-guided nucleases to defend against bacteriophage infection. As a countermeasure, numerous phages are known that produce proteins to block the function of class 1 CRISPR-Cas systems. However, currently no proteins are known to inhibit the widely used class 2 CRISPR-Cas9 system. To find these inhibitors, we searched cas9-containing bacterial genomes for the co-existence of a CRISPR spacer and its target, a potential indicator for CRISPR inhibition. This analysis led to the discovery of four unique type II-A CRISPR-Cas9 inhibitor proteins encoded by Listeria monocytogenes prophages. More than half of L. monocytogenes strains with cas9 contain at least one prophage-encoded inhibitor, suggesting widespread CRISPR-Cas9 inactivation. Two of these inhibitors also blocked the widely used Streptococcus pyogenes Cas9 when assayed in Escherichia coli and human cells. These natural Cas9-specific "anti-CRISPRs" present tools that can be used to regulate the genome engineering activities of CRISPR-Cas9.


Subject(s)
Bacteriophages/metabolism , CRISPR-Cas Systems , Endonucleases/antagonists & inhibitors , Genetic Engineering , Listeria monocytogenes/enzymology , Bacterial Proteins/antagonists & inhibitors , CRISPR-Associated Protein 9 , Escherichia coli , HEK293 Cells , Humans , Listeria monocytogenes/immunology , Listeria monocytogenes/virology , Prophages
5.
Nat Med ; 22(3): 288-97, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26878232

ABSTRACT

Impaired erythropoiesis in the deletion 5q (del(5q)) subtype of myelodysplastic syndrome (MDS) has been linked to heterozygous deletion of RPS14, which encodes the ribosomal protein small subunit 14. We generated mice with conditional inactivation of Rps14 and demonstrated an erythroid differentiation defect that is dependent on the tumor suppressor protein p53 (encoded by Trp53 in mice) and is characterized by apoptosis at the transition from polychromatic to orthochromatic erythroblasts. This defect resulted in age-dependent progressive anemia, megakaryocyte dysplasia and loss of hematopoietic stem cell (HSC) quiescence. As assessed by quantitative proteomics, mutant erythroblasts expressed higher levels of proteins involved in innate immune signaling, notably the heterodimeric S100 calcium-binding proteins S100a8 and S100a9. S100a8--whose expression was increased in mutant erythroblasts, monocytes and macrophages--is functionally involved in the erythroid defect caused by the Rps14 deletion, as addition of recombinant S100a8 was sufficient to induce a differentiation defect in wild-type erythroid cells, and genetic inactivation of S100a8 expression rescued the erythroid differentiation defect of Rps14-haploinsufficient HSCs. Our data link Rps14 haploinsufficiency in del(5q) MDS to activation of the innate immune system and induction of S100A8-S100A9 expression, leading to a p53-dependent erythroid differentiation defect.


Subject(s)
Anemia/genetics , Calgranulin A/genetics , Calgranulin B/genetics , Erythropoiesis/genetics , Haploinsufficiency/genetics , Myelodysplastic Syndromes/genetics , Ribosomal Proteins/genetics , Anemia/immunology , Animals , Blotting, Western , Bone Marrow/pathology , Calgranulin A/metabolism , Cytokines/immunology , Disease Models, Animal , Erythroid Precursor Cells/metabolism , Erythropoiesis/immunology , Flow Cytometry , Fluorescent Antibody Technique , Hematopoietic Stem Cells , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Immunohistochemistry , In Situ Hybridization, Fluorescence , In Vitro Techniques , Mass Spectrometry , Megakaryocytes , Mice , Mice, Knockout , Microscopy, Confocal , Myelodysplastic Syndromes/immunology , Myelodysplastic Syndromes/pathology , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL