Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Thorax ; 77(5): 443-451, 2022 05.
Article in English | MEDLINE | ID: mdl-34510013

ABSTRACT

INTRODUCTION: The significance of endoplasmic reticulum (ER) stress in asthma is unclear. Here, we demonstrate that ER stress and the unfolded protein response (UPR) are related to disease severity and inflammatory phenotype. METHODS: Induced sputum (n=47), bronchial lavage (n=23) and endobronchial biopsies (n=40) were collected from participants with asthma with varying disease severity, inflammatory phenotypes and from healthy controls. Markers for ER stress and UPR were assessed. These markers were also assessed in established eosinophilic and neutrophilic murine models of asthma. RESULTS: Our results demonstrate increased ER stress and UPR pathways in asthma and these are related to clinical severity and inflammatory phenotypes. Genes associated with ER protein chaperone (BiP, CANX, CALR), ER-associated protein degradation (EDEM1, DERL1) and ER stress-induced apoptosis (DDIT3, PPP1R15A) were dysregulated in participants with asthma and are associated with impaired lung function (forced expiratory volume in 1 s) and active eosinophilic and neutrophilic inflammation. ER stress genes also displayed a significant correlation with classic Th2 (interleukin-4, IL-4/13) genes, Th17 (IL-17F/CXCL1) genes, proinflammatory (IL-1b, tumour necrosis factor α, IL-8) genes and inflammasome activation (NLRP3) in sputum from asthmatic participants. Mice with allergic airway disease (AAD) and severe steroid insensitive AAD also showed increased ER stress signalling in their lungs. CONCLUSION: Heightened ER stress is associated with severe eosinophilic and neutrophilic inflammation in asthma and may play a crucial role in the pathogenesis of asthma.


Subject(s)
Asthma , Animals , Asthma/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Humans , Inflammation/metabolism , Mice , Neutrophils/metabolism , Signal Transduction , Unfolded Protein Response
2.
Biomedicines ; 9(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34572347

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterised by a dense fibrosing of the lung parenchyma. An association between IPF and cellular senescence is well established and several studies now describe a higher abundance of senescent fibroblasts and epithelial cells in the lungs of IPF patients compared with age-matched controls. The cause of this abnormal accumulation of senescent cells is unknown but evidence suggests that, once established, senescence can be transferred from senescent to non-senescent cells. In this study, we investigated whether senescent human lung fibroblasts (LFs) and alveolar epithelial cells (AECs) could induce a senescent-like phenotype in "naïve" non-senescent LFs in vitro. Primary cultures of LFs from adult control donors (Ctrl-LFs) with a low baseline of senescence were exposed to conditioned medium (CM) from: (i) Ctrl-LFs induced to become senescent using H2O2 or etoposide; (ii) LFs derived from IPF patients (IPF-LFs) with a high baseline of senescence; or (iii) senescence-induced A549 cells, an AEC line. Additionally, ratios of non-senescent Ctrl-LFs and senescence-induced Ctrl-LFs (100:0, 0:100, 50:50, 90:10, 99:1) were co-cultured and their effect on induction of senescence measured. We demonstrated that exposure of naïve non-senescent Ctrl-LFs to CM from senescence-induced Ctrl-LFs and AECs and IPF-LFs increased the markers of senescence including nuclear localisation of phosphorylated-H2A histone family member X (H2AXγ) and expression of p21, IL-6 and IL-8 in Ctrl-LFs. Additionally, co-cultures of non-senescent and senescence-induced Ctrl-LFs induced a senescent-like phenotype in the non-senescent cells. These data suggest that the phenomenon of "senescence-induced senescence" can occur in vitro in primary cultures of human LFs, and provides a possible explanation for the abnormal abundance of senescent cells in the lungs of IPF patients.

3.
Pharmaceutics ; 12(4)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344567

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by excessive accumulation of lung fibroblasts (LFs) and collagen in the lung parenchyma. The mechanisms that underlie IPF pathophysiology are thought to reflect repeated alveolar epithelial injury leading to an aberrant wound repair response. Recent work has shown that IPF-LFs display increased characteristics of senescence including growth arrest and a senescence-associated secretory phenotype (SASP) suggesting that senescent LFs contribute to dysfunctional wound repair process. Here, we investigated the influence of senescent LFs on alveolar epithelial cell repair responses in a co-culture system. Alveolar epithelial cell proliferation was attenuated when in co-culture with cells or conditioned media from, senescence-induced control LFs or IPF-LFs. Cell-cycle analyses showed that a larger number of epithelial cells were arrested in G2/M phase when co-cultured with IPF-LFs, than in monoculture. Paradoxically, the presence of LFs resulted in increased A549 migration after mechanical injury. Our data suggest that senescent LFs may contribute to aberrant re-epithelialization by inhibiting proliferation in IPF.

4.
Clin Sci (Lond) ; 134(7): 889-905, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32219338

ABSTRACT

Senescence and mitochondrial stress are mutually reinforcing age-related processes that contribute to idiopathic pulmonary fibrosis (IPF); a lethal disease that manifests primarily in the elderly. Whilst evidence is accumulating that GMP-AMP synthase (cGAS) is crucial in perpetuating senescence by binding damaged DNA released into the cytosol, its role in IPF is not known. The present study examines the contributions of cGAS and self DNA to the senescence of lung fibroblasts from IPF patients (IPF-LFs) and age-matched controls (Ctrl-LFs). cGAS immunoreactivity was observed in regions of fibrosis associated with fibroblasts in lung tissue of IPF patients. Pharmacological inhibition of cGAS or its knockdown by silencing RNA (siRNA) diminished the escalation of IPF-LF senescence in culture over 7 days as measured by decreased p21 and p16 expression, histone 2AXγ phosphorylation and/or IL-6 production (P < 0.05, n = 5-8). The targeting of cGAS also attenuated etoposide-induced senescence in Ctrl-LFs (P < 0.05, n = 5-8). Levels of mitochondrial DNA (mDNA) detected by qPCR in the cytosol and medium of IPF-LFs or senescence-induced Ctrl-LFs were higher than Ctrl-LFs at baseline (P < 0.05, n = 5-7). The addition of DNAse I (100 U/ml) deaccelerated IPF-LF senescence (P < 0.05, n = 5), whereas ectopic mDNA or the induction of endogenous mDNA release augmented Ctrl-LF senescence in a cGAS-dependent manner (P < 0.05, n = 5). In conclusion, we provide evidence that cGAS reinforces lung fibroblast senescence involving damaged self DNA. The targeting of cGAS to supress senescent-like responses may have potential important therapeutic implications in the treatment of IPF.


Subject(s)
Cell Proliferation , Cellular Senescence , DNA, Mitochondrial/metabolism , Fibroblasts/enzymology , Idiopathic Pulmonary Fibrosis/enzymology , Lung/enzymology , Nucleotidyltransferases/metabolism , Case-Control Studies , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , DNA, Mitochondrial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Fibroblasts/pathology , Histones/metabolism , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Interleukin-6/genetics , Interleukin-6/metabolism , Lung/drug effects , Lung/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , Paracrine Communication , Phosphorylation , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
5.
J Asthma Allergy ; 13: 1-10, 2020.
Article in English | MEDLINE | ID: mdl-32021308

ABSTRACT

Hymenoptera venom allergy (HVA) is the leading cause of anaphylactic reactions in adults and the second most common cause in children. Venom immunotherapy (VIT) is used to elicit an immune tolerance against hymenoptera venom in allergic patients and is based on the administration of purified venom extracts regularly for defined periods. The protocols of administration include 2 phases: an up-dosing phase that incrementally reaches the final dose resulting in a protective effect, and a maintenance phase in order to obtain the sustained effect. The goal of this review is to detail the efficacy and the safety of the up-dosing phase also named rush. Pathophysiological mechanisms, indications of VIT and technical aspects of up-dosing protocol are also covered.

6.
Aging Dis ; 10(2): 419-428, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31011486

ABSTRACT

Aging promotes a range of degenerative pathologies characterized by progressive losses of tissue and/or cellular function. Fibrosis is the hardening, overgrowth and scarring of various tissues characterized by the accumulation of extracellular matrix components. Aging is an important predisposing factor common for fibrotic heart and respiratory disease. Age-related processes such as senescence, inflammaging, autophagy and mitochondrial dysfunction are interconnected biological processes that diminish the regenerative capacity of the aged heart and lung and have been shown to play a crucial role in cardiac fibrosis and idiopathic pulmonary fibrosis. This review focuses on these four processes of aging in relation to their role in fibrosis. It has long been established that the heart and lung are linked both functionally and anatomically when it comes to health and disease, with an ever-expanding aging population, the incidence of fibrotic disease and therefore the number of fibrosis-related deaths will continue to rise. There are currently no feasible therapies to treat the effects of chronic fibrosis therefore highlighting the importance of exploring the processes of aging and its role in inducing and exacerbating fibrosis of each organ. The focus of this review may help to highlight potential avenues of therapeutic exploration.

7.
Am J Respir Cell Mol Biol ; 61(1): 61-73, 2019 07.
Article in English | MEDLINE | ID: mdl-30608861

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of unknown cause with a median survival of only 3 years. Other investigators and we have shown that fibroblasts derived from IPF lungs display characteristics of senescent cells, and that dysregulated activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) correlates with IPF progression. The question of whether STAT3 activation is involved in fibroblast senescence remains unanswered. We hypothesized that inhibiting STAT3 activation after oxidant-induced senescence would attenuate characteristics of the senescent phenotype. We aimed to characterize a model of oxidant-induced senescence in human lung fibroblasts and to determine the effect of inhibiting STAT3 activity on the development of senescence. Exposing human lung fibroblasts to 150 µM hydrogen peroxide (H2O2) resulted in increased senescence-associated ß-galactosidase content and expression of p21 and IL-6, all of which are features of senescence. The shift into senescence was accompanied by an increase of STAT3 translocation to the nucleus and mitochondria. Additionally, Seahorse analysis provided evidence of increased mitochondrial respiration characterized by increased basal respiration, proton leak, and an associated increase in superoxide (O2-) production in senescent fibroblasts. Targeting STAT3 activity using the small-molecule inhibitor STA-21 attenuated IL-6 production, reduced p21 levels, decreased senescence-associated ß-galactosidase accumulation, and restored normal mitochondrial function. The results of this study illustrate that stress-induced senescence in lung fibroblasts involves the activation of STAT3, which can be pharmacologically modulated.


Subject(s)
Cellular Senescence/drug effects , Fibroblasts/pathology , Lung/pathology , Oxidants/toxicity , STAT3 Transcription Factor/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Respiration/drug effects , Fibroblasts/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Phenotype , Phosphorylation/drug effects , Polycyclic Compounds/pharmacology , Protein Transport/drug effects
8.
J Cell Mol Med ; 22(12): 5847-5861, 2018 12.
Article in English | MEDLINE | ID: mdl-30255990

ABSTRACT

Increasing evidence highlights that senescence plays an important role in idiopathic pulmonary fibrosis (IPF). This study delineates the specific contribution of mitochondria and the superoxide they form to the senescent phenotype of lung fibroblasts from IPF patients (IPF-LFs). Primary cultures of IPF-LFs exhibited an intensified DNA damage response (DDR) and were more senescent than age-matched fibroblasts from control donors (Ctrl-LFs). Furthermore, IPF-LFs exhibited mitochondrial dysfunction, exemplified by increases in mitochondrial superoxide, DNA, stress and activation of mTORC1. The DNA damaging agent etoposide elicited a DDR and augmented senescence in Ctrl-LFs, which were accompanied by disturbances in mitochondrial homoeostasis including heightened superoxide production. However, etoposide had no effect on IPF-LFs. Mitochondrial perturbation by rotenone involving sharp increases in superoxide production also evoked a DDR and senescence in Ctrl-LFs, but not IPF-LFs. Inhibition of mTORC1, antioxidant treatment and a mitochondrial targeting antioxidant decelerated IPF-LF senescence and/or attenuated pharmacologically induced Ctrl-LF senescence. In conclusion, increased superoxide production by dysfunctional mitochondria reinforces lung fibroblast senescence via prolongation of the DDR. As part of an auto-amplifying loop, mTORC1 is activated, altering mitochondrial homoeostasis and increasing superoxide production. Deeper understanding the mechanisms by which mitochondria contribute to fibroblast senescence in IPF has potentially important therapeutic implications.


Subject(s)
Cellular Senescence , Fibroblasts/pathology , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Mitochondria/pathology , Acetylcysteine/pharmacology , Biomarkers/metabolism , Cellular Senescence/drug effects , Cyclic N-Oxides/metabolism , Down-Regulation/drug effects , Etoposide/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rotenone/pharmacology , Sirolimus/pharmacology
9.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L162-L172, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29696986

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause with a median survival of only three years. Little is known about the mechanisms that precede the excessive collagen deposition seen in IPF, but cellular senescence has been strongly implicated in disease pathology. Senescence is a state of irreversible cell-cycle arrest accompanied by an abnormal secretory profile and is thought to play a critical role in both development and wound repair. Normally, once a senescent cell has contributed to wound repair, it is promptly removed from the environment via infiltrating immune cells. However, if immune clearance fails, the persistence of senescent cells is thought to drive disease pathology through their altered secretory profile. One of the major cell types involved in wound healing is fibroblasts, and senescent fibroblasts have been identified in the lungs of patients with IPF and in fibroblast cultures from IPF lungs. The question of what is driving abnormally high numbers of fibroblasts into senescence remains unanswered. The transcription factor signal transducer and activator of transcription 3 (STAT3) plays a role in a myriad of processes, including cell-cycle progression, gene transcription, as well as mitochondrial respiration, all of which are dysregulated during senescence. Activation of STAT3 has previously been shown to correlate with IPF progression and therefore is a potential molecular target to modify early-stage senescence and restore normal fibroblast function. This review summarizes what is presently known about fibroblast senescence in IPF and how STAT3 may contribute to this phenotype.


Subject(s)
Cellular Senescence , Fibroblasts , Gene Expression Regulation , Idiopathic Pulmonary Fibrosis , Lung , Signal Transduction , Animals , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Lung/pathology
10.
Front Immunol ; 9: 175, 2018.
Article in English | MEDLINE | ID: mdl-29472925

ABSTRACT

Asthma is a heterogeneous, chronic inflammatory disease of the airways. It is a complex disease with different clinical phenotypes and results in a substantial socioeconomic burden globally. Poor understanding of pathogenic mechanisms of the disease hinders the investigation into novel therapeutics. Emerging evidence of the unfolded protein response (UPR) in the endoplasmic reticulum (ER) has demonstrated previously unknown functions of this response in asthma development. A worsening of asthmatic condition can be brought on by stimuli such as oxidative stress, pathogenic infections, and allergen exposure. All of which can induce ER stress and activate UPR leading to activation of different inflammatory responses and dysregulate the innate immune functions in the airways. The UPR as a central regulator of asthma pathogenesis may explain several unknown mechanism of the disease onset, which leads us in new directions for future asthma treatments. In this review, we summarize and discuss the causes and impact of ER-UPR in driving the pathogenesis of asthma and highlight its importance in clinical implications.


Subject(s)
Asthma/pathology , Endoplasmic Reticulum Stress , Immunity, Innate , Unfolded Protein Response , Animals , Clinical Trials as Topic , Cytokines , Disease Models, Animal , Endoplasmic Reticulum/pathology , Humans , Inflammation , Mice , Signal Transduction
11.
Front Physiol ; 8: 777, 2017.
Article in English | MEDLINE | ID: mdl-29075197

ABSTRACT

Fibrosis is the formation of fibrous connective tissue in response to injury. It is characterized by the accumulation of extracellular matrix components, particularly collagen, at the site of injury. Fibrosis is an adaptive response that is a vital component of wound healing and tissue repair. However, its continued activation is highly detrimental and a common final pathway of numerous disease states including cardiovascular and respiratory disease. Worldwide, fibrotic diseases cause over 800,000 deaths per year, accounting for ~45% of total deaths. With an aging population, the incidence of fibrotic disease and subsequently the number of fibrosis-related deaths will rise further. Although, fibrosis is a well-recognized cause of morbidity and mortality in a range of disease states, there are currently no viable therapies to reverse the effects of chronic fibrosis. Numerous predisposing factors contribute to the development of fibrosis. Biological aging in particular, interferes with repair of damaged tissue, accelerating the transition to pathological remodeling, rather than a process of resolution and regeneration. When fibrosis progresses in an uncontrolled manner, it results in the irreversible stiffening of the affected tissue, which can lead to organ malfunction and death. Further investigation into the mechanisms of fibrosis is necessary to elucidate novel, much needed, therapeutic targets. Fibrosis of the heart and lung make up a significant proportion of fibrosis-related deaths. It has long been established that the heart and lung are functionally and geographically linked when it comes to health and disease, and thus exploring the processes and mechanisms that contribute to fibrosis of each organ, the focus of this review, may help to highlight potential avenues of therapeutic investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...