Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Oncogene ; 42(47): 3529-3541, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37845394

ABSTRACT

TP53 and RB1 loss-of-function mutations are common in osteosarcoma. During development, combined loss of TP53 and RB1 function leads to downregulation of autophagy and the aberrant formation of primary cilia, cellular organelles essential for the transmission of canonical Hedgehog (Hh) signaling. Excess cilia formation then leads to hypersensitivity to Hedgehog (Hh) ligand signaling. In mouse and human models, we now show that osteosarcomas with mutations in TP53 and RB1 exhibit enhanced ligand-dependent Hh pathway activation through Smoothened (SMO), a transmembrane signaling molecule required for activation of the canonical Hh pathway. This dependence is mediated by hypersensitivity to Hh ligand and is accompanied by impaired autophagy and increased primary cilia formation and expression of Hh ligand in vivo. Using a conditional genetic mouse model of Trp53 and Rb1 inactivation in osteoblast progenitors, we further show that deletion of Smo converts the highly malignant osteosarcoma phenotype to benign, well differentiated bone tumors. Conversely, conditional overexpression of SHH ligand, or a gain-of-function SMO mutant in committed osteoblast progenitors during development blocks terminal bone differentiation. Finally, we demonstrate that the SMO antagonist sonidegib (LDE225) induces growth arrest and terminal differentiation in vivo in osteosarcomas that express primary cilia and Hh ligand combined with mutations in TP53. These results provide a mechanistic framework for aberrant Hh signaling in osteosarcoma based on defining mutations in the tumor suppressor, TP53.


Subject(s)
Antineoplastic Agents , Osteosarcoma , Humans , Animals , Mice , Hedgehog Proteins/metabolism , Ligands , Signal Transduction , Antineoplastic Agents/pharmacology , Osteosarcoma/genetics , Osteosarcoma/metabolism , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Cilia/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
2.
J Exp Clin Cancer Res ; 42(1): 100, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37098540

ABSTRACT

BACKGROUND: Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer with an appalling overall survival of less than 5% (Zimmerman et al. J Thor Oncol 14:768-83, 2019). Patients typically respond to front line platinum-based doublet chemotherapy, but almost universally relapse with drug resistant disease. Elevated MYC expression is common in SCLC and has been associated with platinum resistance. This study evaluates the capacity of MYC to drive platinum resistance and through screening identifies a drug capable of reducing MYC expression and overcoming resistance. METHODS: Elevated MYC expression following the acquisition of platinum resistance in vitro and in vivo was assessed. Moreover, the capacity of enforced MYC expression to drive platinum resistance was defined in SCLC cell lines and in a genetically engineered mouse model that expresses MYC specifically in lung tumors. High throughput drug screening was used to identify drugs able to kill MYC-expressing, platinum resistant cell lines. The capacity of this drug to treat SCLC was defined in vivo in both transplant models using cell lines and patient derived xenografts and in combination with platinum and etoposide chemotherapy in an autochthonous mouse model of platinum resistant SCLC. RESULTS: MYC expression is elevated following the acquisition of platinum resistance and constitutively high MYC expression drives platinum resistance in vitro and in vivo. We show that fimepinostat decreases MYC expression and that it is an effective single agent treatment for SCLC in vitro and in vivo. Indeed, fimepinostat is as effective as platinum-etoposide treatment in vivo. Importantly, when combined with platinum and etoposide, fimepinostat achieves a significant increase in survival. CONCLUSIONS: MYC is a potent driver of platinum resistance in SCLC that is effectively treated with fimepinostat.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Animals , Humans , Mice , Etoposide/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplasm Recurrence, Local , Phosphatidylinositol 3-Kinases , Platinum/pharmacology , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Proto-Oncogene Proteins c-myc/metabolism
3.
Sci Rep ; 12(1): 10568, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732702

ABSTRACT

Microtubule-associated serine/threonine kinase-like (MASTL) has emerged as a critical regulator of mitosis and as a potential oncogene in a variety of cancer types. To date, Arpp-19/ENSA are the only known substrates of MASTL. However, with the roles of MASTL expanding and increased interest in development of MASTL inhibitors, it has become critical to determine if there are additional substrates and what the optimal consensus motif for MASTL is. Here we utilized a whole cell lysate in vitro kinase screen combined with stable isotope labelling of amino acids in cell culture (SILAC) to identify potential substrates and the residue preference of MASTL. Using the related AGC kinase family members AKT1/2, the kinase screen identified several known and new substrates highly enriched for the validated consensus motif of AKT. Applying this method to MASTL identified 59 phospho-sites on 67 proteins that increased in the presence of active MASTL. Subsequent in vitro kinase assays suggested that MASTL may phosphorylate hnRNPM, YB1 and TUBA1C under certain in vitro conditions. Taken together, these data suggest that MASTL may phosphorylate several additional substrates, providing insight into the ever-increasing biological functions and roles MASTL plays in driving cancer progression and therapy resistance.


Subject(s)
Microtubule-Associated Proteins , Neoplasms , Protein Serine-Threonine Kinases , Cell Culture Techniques , Humans , Isotope Labeling , Microtubule-Associated Proteins/metabolism , Mitosis , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166335, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34973373

ABSTRACT

BACKGROUND & AIMS: Loss of primary cilia in epithelial cells is known to cause cystic diseases of the liver and kidney. We have previously shown that during experimental and human cirrhosis that primary cilia were predominantly expressed on biliary cells in the ductular reaction. However, the role of primary cilia in the pathogenesis of the ductular reaction is not fully understood. METHODS: Primary cilia were specifically removed in biliary epithelial cells (BECs) by the administration of tamoxifen to Kif3af/f;CK19CreERT mice at week 2 of a 20-week course of TAA treatment. Biliary progenitor cells were isolated and grown as organoids from gallbladders. Cells and tissue were analysed using histology, immunohistochemistry and Western blot assays. RESULTS: At the end of 20 weeks TAA administration, primary cilia loss in liver BECs resulted in multiple microscopic cystic lesions within an unaltered ductular reaction. These were not seen in control mice who did not receive TAA. There was no effect of biliary primary cilia loss on the development of cirrhosis. Increased cellular proliferation was seen within the cystic structures associated with a decrease in hepatocyte lobular proliferation. Loss of primary cilia within biliary organoids was initially associated with reduced cell passage survival but this inhibitory effect was diminished in later passages. ERK but not WNT signalling was enhanced in primary cilia loss-induced cystic lesions in vivo and its inhibition reduced the expansion of primary cilia deficient biliary progenitor cells in vitro. CONCLUSIONS: TAA-treated kif3a BEC-specific knockout mice had an unaltered progression to cirrhosis, but developed cystic lesions that showed increased proliferation.


Subject(s)
Cilia/pathology , Cysts/pathology , Kinesins/genetics , Liver Diseases/pathology , Animals , Biliary Tract/cytology , Cell Proliferation , Cilia/metabolism , Cysts/chemically induced , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Keratin-19/genetics , Keratin-19/metabolism , Kinesins/deficiency , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism , Thioacetamide/toxicity
5.
Oncogene ; 41(1): 138-145, 2022 01.
Article in English | MEDLINE | ID: mdl-34675406

ABSTRACT

Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer characterized by loss of function TP53 and RB1 mutations in addition to mutations in other oncogenes including MYC. Overexpression of MYC together with Trp53 and Rb1 loss in pulmonary neuroendocrine cells of the mouse lung drives an aggressive neuroendocrine low variant subtype of SCLC. However, the transforming potential of MYC amplification alone on airway epithelium is unclear. Therefore, we selectively and conditionally overexpressed MYC stochastically throughout the airway or specifically in neuroendocrine, club, or alveolar type II cells in the adult mouse lung. We observed that MYC overexpression induced carcinoma in situ which did not progress to invasive disease. The formation of adenoma or SCLC carcinoma in situ was dependent on the cell of origin. In contrast, MYC overexpression combined with conditional deletion of both Trp53 and Rb1 exclusively gave rise to SCLC, irrespective of the cell lineage of origin. However, cell of origin influenced disease latency, metastatic potential, and the transcriptional profile of the SCLC phenotype. Together this reveals that MYC overexpression alone provides a proliferative advantage but when combined with deletion of Trp53 and Rb1 it facilitates the formation of aggressive SCLC from multiple cell lineages.


Subject(s)
Lung Neoplasms/genetics , Oncogenes/physiology , Retinoblastoma Protein/metabolism , Small Cell Lung Carcinoma/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Humans , Lung Neoplasms/pathology , Mice , Small Cell Lung Carcinoma/pathology
6.
Elife ; 102021 05 13.
Article in English | MEDLINE | ID: mdl-33983115

ABSTRACT

We previously used a pulse-based in vitro assay to unveil targetable signalling pathways associated with innate cisplatin resistance in lung adenocarcinoma (Hastings et al., 2020). Here, we advanced this model system and identified a non-genetic mechanism of resistance that drives recovery and regrowth in a subset of cells. Using RNAseq and a suite of biosensors to track single-cell fates both in vitro and in vivo, we identified that early S phase cells have a greater ability to maintain proliferative capacity, which correlated with reduced DNA damage over multiple generations. In contrast, cells in G1, late S or those treated with PARP/RAD51 inhibitors, maintained higher levels of DNA damage and underwent prolonged S/G2 phase arrest and senescence. Combined with our previous work, these data indicate that there is a non-genetic mechanism of resistance in human lung adenocarcinoma that is dependent on the cell cycle stage at the time of cisplatin exposure.


Subject(s)
Adenocarcinoma of Lung/pathology , Antineoplastic Agents/pharmacology , Carboplatin/pharmacology , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Lung Neoplasms/pathology , Adenocarcinoma of Lung/metabolism , Animals , Cell Line, Tumor , DNA Damage/drug effects , Humans , Lung Neoplasms/metabolism , Mice , Poly(ADP-ribose) Polymerase Inhibitors , Rad51 Recombinase , Single-Cell Analysis , Xenograft Model Antitumor Assays
7.
Mol Cell Oncol ; 7(6): 1805095, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-33235907

ABSTRACT

Loss of tumor protein p53 (p53) and RB transcriptional corepressor 1 (RB1) in developmental and small cell lung cancer models promotes primary cilia formation and hyper-responsiveness to Hedgehog ligand. This is mediated by impaired transcription of p53 and RB1 target genes involved in autophagic degradation of primary cilia.

8.
Elife ; 92020 06 09.
Article in English | MEDLINE | ID: mdl-32513387

ABSTRACT

The identification of clinically viable strategies for overcoming resistance to platinum chemotherapy in lung adenocarcinoma has previously been hampered by inappropriately tailored in vitro assays of drug response. Therefore, using a pulse model that closely mimics the in vivo pharmacokinetics of platinum therapy, we profiled cisplatin-induced signalling, DNA-damage and apoptotic responses across a panel of human lung adenocarcinoma cell lines. By coupling this data to real-time, single-cell imaging of cell cycle and apoptosis we provide a fine-grained stratification of response, where a P70S6K-mediated signalling axis promotes resistance on a TP53 wildtype or null background, but not a mutant TP53 background. This finding highlights the value of in vitro models that match the physiological pharmacokinetics of drug exposure. Furthermore, it also demonstrates the importance of a mechanistic understanding of the interplay between somatic mutations and the signalling networks that govern drug response for the implementation of any consistently effective, patient-specific therapy.


Lung adenocarcinoma is the most common type of lung cancer, and it emerges because of a variety of harmful genetic changes, or mutations. Two lung cancer patients ­ or indeed, two different sets of cancerous cells within a patient ­ may therefore carry different damaging mutations. A group of drugs called platinum-based chemotherapies are currently the most effective way to treat lung adenocarcinoma. Yet, only 30% of patients actually respond to the therapy. Many studies conducted in laboratory settings have tried to understand why most cases are resistant to treatment, with limited success. Here, Hastings, Gonzalez-Rajal et al. propose that previous research has been inconclusive because studies done in the laboratory do not reflect how the treatment is actually administered. In patients, platinum-based drugs are cleared from the body within a few hours, but during experiments, the treatment is continually administered to cells growing in a dish. Hastings, Gonzalez-Rajal et al. therefore developed a laboratory method that mimics the way cells are exposed to platinum-based chemotherapy in the body. These experiments showed that the lung adenocarcinoma cells which resisted treatment also carried high levels of a protein known as P70S6K. Pairing platinum-based chemotherapy with a drug that blocks the activity of P70S6K killed these resistant cells. This combination also treated human lung adenocarcinoma tumours growing under the skin of mice. However, it was ineffective on cancerous cells that carry a mutation in a protein called p53, which is often defective in cancers. Overall, this work demonstrates the need to refine how drugs are tested in the laboratory to better reflect real-life conditions. It also underlines the importance of personalizing drug combinations to the genetic background of each tumour, a concept that will be vital to consider in future clinical trials.


Subject(s)
Adenocarcinoma of Lung , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Lung Neoplasms , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Signal Transduction/drug effects
9.
J Clin Invest ; 130(8): 4006-4018, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32568216

ABSTRACT

Ligand-dependent activation of Hedgehog (Hh) signaling in cancer occurs without mutations in canonical pathway genes. Consequently, the genetic basis of Hh pathway activation in adult solid tumors, such as small-cell lung cancer (SCLC), is unknown. Here we show that combined inactivation of Trp53 and Rb1, a defining genetic feature of SCLC, leads to hypersensitivity to Hh ligand in vitro, and during neural tube development in vivo. This response is associated with the aberrant formation of primary cilia, an organelle essential for canonical Hh signaling through smoothened, a transmembrane protein targeted by small-molecule Hh inhibitors. We further show that loss of both Trp53 and Rb1 disables transcription of genes in the autophagic machinery necessary for the degradation of primary cilia. In turn, we also demonstrate a requirement for Kif3a, a gene essential for the formation of primary cilia, in a mouse model of SCLC induced by conditional deletion of both Trp53 and Rb1 in the adult airway. Our results provide a mechanistic framework for therapeutic targeting of ligand-dependent Hh signaling in human cancers with somatic mutations in both TP53 and RB1.


Subject(s)
Autophagy , Hedgehog Proteins/metabolism , Lung Neoplasms/metabolism , Neoplasms, Experimental/metabolism , Retinoblastoma Binding Proteins/metabolism , Signal Transduction , Small Cell Lung Carcinoma/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism , Animals , Hedgehog Proteins/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Transgenic , Mutation , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Retinoblastoma Binding Proteins/genetics , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Tumor Suppressor Protein p53/genetics
11.
Lab Invest ; 100(1): 16-26, 2020 01.
Article in English | MEDLINE | ID: mdl-31292541

ABSTRACT

Gastroesophageal junction (GEJ) cancer remains a clinically significant disease in Western countries due to its increasing incidence, which mirrors that of esophageal cancer, and poor prognosis. To develop novel and effective approaches for prevention, early detection, and treatment of patients with GEJ cancer, a better understanding of the mechanisms driving pathogenesis and malignant progression of this disease is required. These efforts have been limited by the small number of available cell lines and appropriate preclinical animal models for in vitro and in vivo studies. We have established and characterized a novel GEJ cancer cell line, GEAMP, derived from the malignant pleural effusion of a previously treated GEJ cancer patient. Comprehensive genetic analyses confirmed a clonal relationship between GEAMP cells and the primary tumor. Targeted next-generation sequencing identified 56 nonsynonymous alterations in 51 genes including TP53 and APC, which are commonly altered in GEJ cancer. In addition, multiple copy-number alterations were found including EGFR and K-RAS gene amplifications and loss of CDKN2A and CDKN2B. Histological examination of subcutaneous flank xenografts in nude and NOD-SCID mice showed a carcinoma with mixed squamous and glandular differentiation, suggesting GEAMP cells contain a subpopulation with multipotent potential. Finally, pharmacologic inhibition of the EGFR signaling pathway led to downregulation of key downstream kinases and inhibition of cell proliferation in vitro. Thus, GEAMP represents a valuable addition to the limited number of bona fide GEJ cancer cell lines.


Subject(s)
Adenocarcinoma/pathology , Cell Line, Tumor , Esophageal Neoplasms/pathology , Esophagogastric Junction/pathology , Pleural Effusion, Malignant/pathology , Adenocarcinoma/therapy , Animals , ErbB Receptors/antagonists & inhibitors , Esophageal Neoplasms/therapy , Fatal Outcome , Female , Humans , Male , Mice , Mice, Nude , Mice, SCID , Middle Aged , Pleural Effusion, Malignant/therapy , Xenograft Model Antitumor Assays
12.
Cancers (Basel) ; 11(11)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31683879

ABSTRACT

Medulloblastoma is the most common malignant brain tumor in children and represents 20% of all pediatric central nervous system neoplasms. While advances in surgery, radiation and chemotherapy have improved overall survival, the lifelong sequelae of these treatments represent a major health care burden and have led to ongoing efforts to find effective targeted treatments. There is a well-recognized male bias in medulloblastoma diagnosis, although the mechanism remains unknown. Herein, we identify a sex-specific role for the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3) in the Sonic Hedgehog (SHH) medulloblastoma subgroup. Specific deletion of Stat3 from granule cell precursors in a spontaneous mouse model of SHH medulloblastoma completely protects male, but not female mice from tumor initiation. Segregation of SHH medulloblastoma patients into high and low STAT3 expressing cohorts shows that low STAT3 expression correlates with improved overall survival in male patients. We observe sex specific changes in IL-10 and IL-6 expression and show that IL-6 stimulation enhances SHH-mediated gene transcription in a STAT3-dependent manner. Together these data identify STAT3 as a key molecule underpinning the sexual dimorphism in medulloblastoma.

13.
BMC Res Notes ; 12(1): 718, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31676011

ABSTRACT

OBJECTIVES: Primary cilia are sensory organelles which co-ordinate several developmental/repair pathways including hedgehog signalling. Studies of human renal allografts suffering acute tubular necrosis have shown that length of primary cilia borne by epithelial cells doubles throughout the nephron and collecting duct, and then normalises as renal function returns. Conversely the loss of primary cilia has been reported in chronic allograft rejection and linked to defective hedgehog signalling. We investigated the fate of primary cilia in renal allografts suffering acute rejection. RESULTS: Here we observed that in renal allografts undergoing acute rejection, primary cilia were retained, with their length increasing 1 week after transplantation and remaining elevated. We used a mouse model of acute renal injury to demonstrate that elongated renal primary cilia in the injured renal tubule show evidence of smoothened accumulation, a biomarker for activation of hedgehog signalling. We conclude that primary cilium-mediated activation of hedgehog signalling is still possible during the acute phase of renal allograft rejection.


Subject(s)
Cilia/metabolism , Epithelial Cells/metabolism , Graft Rejection/metabolism , Kidney Transplantation/methods , Kidney/metabolism , Acute Kidney Injury/metabolism , Allografts , Animals , Disease Models, Animal , Hedgehog Proteins/metabolism , Humans , Kidney/cytology , Mice , Signal Transduction , Smoothened Receptor/metabolism
14.
Article in English | MEDLINE | ID: mdl-30936196

ABSTRACT

Adrenocortical carcinoma is a rare malignancy with a poor prognosis and few treatment options. Molecular characterization of this cancer remains limited. We present a case of an adrenocortical carcinoma (ACC) in a 37-yr-old female, with dual lung metastases identified 1 yr following commencement of adjuvant mitotane therapy. As standard therapeutic regimens are often unsuccessful in ACC, we undertook a comprehensive genomic study into this case to identify treatment options and monitor disease progress. We performed targeted and whole-genome sequencing of germline, primary tumor, and both metastatic tumors from this patient and monitored recurrence over 2 years using liquid biopsy for ctDNA and steroid hormone measurements. Sequencing revealed the primary and metastatic tumors were hyperhaploid, with extensive loss of heterozygosity but few structural rearrangements. Loss-of-function mutations were identified in MSH2, TP53, RB1, and PTEN, resulting in tumors with mismatch repair signatures and microsatellite instability. At the cellular level, tumors were populated by mitochondria-rich oncocytes. Longitudinal ctDNA mutation and hormone profiles were unable to detect micrometastatic disease, consistent with clinical indicators of disease remission. The molecular signatures in our ACC case suggested immunotherapy in the event of disease progression; however, the patient remains free of cancer. The extensive molecular analysis presented here could be applied to other rare and/or poorly stratified cancers to identify novel or repurpose existing therapeutic options, thereby broadly improving diagnoses, treatments, and prognoses.


Subject(s)
Adrenal Cortex Neoplasms/diagnosis , Adrenocortical Carcinoma/diagnosis , Lung Neoplasms/secondary , Whole Genome Sequencing/methods , Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/genetics , Adult , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Microsatellite Instability , Mutation , Prognosis
15.
Nat Commun ; 10(1): 1342, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30902988

ABSTRACT

Chirality is a property describing any object that is inequivalent to its mirror image. Due to its 5'-3' directionality, a DNA sequence is distinct from a mirrored sequence arranged in reverse nucleotide-order, and is therefore chiral. A given sequence and its opposing chiral partner sequence share many properties, such as nucleotide composition and sequence entropy. Here we demonstrate that chiral DNA sequence pairs also perform equivalently during molecular and bioinformatic techniques that underpin genetic analysis, including PCR amplification, hybridization, whole-genome, target-enriched and nanopore sequencing, sequence alignment and variant detection. Given these shared properties, synthetic DNA sequences mirroring clinically relevant or analytically challenging regions of the human genome are ideal controls for clinical genomics. The addition of synthetic chiral sequences (sequins) to patient tumor samples can prevent false-positive and false-negative mutation detection to improve diagnosis. Accordingly, we propose that sequins can fulfill the need for commutable internal controls in precision medicine.


Subject(s)
DNA/genetics , Genomics , Base Sequence , High-Throughput Nucleotide Sequencing , Humans , Microsatellite Repeats/genetics , Mutation/genetics , Nanopores , Neoplasms/genetics , Polymerase Chain Reaction , Sequence Alignment
16.
EMBO Mol Med ; 11(4)2019 04.
Article in English | MEDLINE | ID: mdl-30833304

ABSTRACT

Oncogenic KRAS mutations are major drivers of lung adenocarcinoma (LAC), yet the direct therapeutic targeting of KRAS has been problematic. Here, we reveal an obligate requirement by oncogenic KRAS for the ADAM17 protease in LAC In genetically engineered and xenograft (human cell line and patient-derived) KrasG12D-driven LAC models, the specific blockade of ADAM17, including with a non-toxic prodomain inhibitor, suppressed tumor burden by reducing cellular proliferation. The pro-tumorigenic activity of ADAM17 was dependent upon its threonine phosphorylation by p38 MAPK, along with the preferential shedding of the ADAM17 substrate, IL-6R, to release soluble IL-6R that drives IL-6 trans-signaling via the ERK1/2 MAPK pathway. The requirement for ADAM17 in KrasG12D-driven LAC was independent of bone marrow-derived immune cells. Furthermore, in KRAS mutant human LAC, there was a significant positive correlation between augmented phospho-ADAM17 levels, observed primarily in epithelial rather than immune cells, and activation of ERK and p38 MAPK pathways. Collectively, these findings identify ADAM17 as a druggable target for oncogenic KRAS-driven LAC and provide the rationale to employ ADAM17-based therapeutic strategies for targeting KRAS mutant cancers.


Subject(s)
ADAM17 Protein/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, Interleukin-6/metabolism , ADAM17 Protein/antagonists & inhibitors , Animals , Cell Line, Tumor , Genotype , Humans , Lung Neoplasms/pathology , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mutation , Phosphorylation , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Breast Cancer Res ; 21(1): 43, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30898150

ABSTRACT

BACKGROUND: The oncogenic receptor tyrosine kinase (RTK) ERBB2 is known to dimerize with other EGFR family members, particularly ERBB3, through which it potently activates PI3K signalling. Antibody-mediated inhibition of this ERBB2/ERBB3/PI3K axis has been a cornerstone of treatment for ERBB2-amplified breast cancer patients for two decades. However, the lack of response and the rapid onset of relapse in many patients now question the assumption that the ERBB2/ERBB3 heterodimer is the sole relevant effector target of these therapies. METHODS: Through a systematic protein-protein interaction screen, we have identified and validated alternative RTKs that interact with ERBB2. Using quantitative readouts of signalling pathway activation and cell proliferation, we have examined their influence upon the mechanism of trastuzumab- and pertuzumab-mediated inhibition of cell growth in ERBB2-amplified breast cancer cell lines and a patient-derived xenograft model. RESULTS: We now demonstrate that inactivation of ERBB3/PI3K by these therapeutic antibodies is insufficient to inhibit the growth of ERBB2-amplified breast cancer cells. Instead, we show extensive promiscuity between ERBB2 and an array of RTKs from outside of the EGFR family. Paradoxically, pertuzumab also acts as an artificial ligand to promote ERBB2 activation and ERK signalling, through allosteric activation by a subset of these non-canonical RTKs. However, this unexpected activation mechanism also increases the sensitivity of the receptor network to the ERBB2 kinase inhibitor lapatinib, which in combination with pertuzumab, displays a synergistic effect in single-agent resistant cell lines and PDX models. CONCLUSIONS: The interaction of ERBB2 with a number of non-canonical RTKs activates a compensatory signalling response following treatment with pertuzumab, although a counter-intuitive combination of ERBB2 antibody therapy and a kinase inhibitor can overcome this innate therapeutic resistance.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Mice , Phosphorylation , Receptor, ErbB-2/antagonists & inhibitors , Signal Transduction/drug effects , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays
18.
Oncogene ; 38(10): 1661-1675, 2019 03.
Article in English | MEDLINE | ID: mdl-30348992

ABSTRACT

Our understanding of genomic heterogeneity in lung cancer is largely based on the analysis of early-stage surgical specimens. Here we used endoscopic sampling of paired primary and intrathoracic metastatic tumors from 11 lung cancer patients to map genomic heterogeneity inoperable lung cancer with deep whole-genome sequencing. Intra-patient heterogeneity in driver or targetable mutations was predominantly in the form of copy number gain. Private mutation signatures, including patterns consistent with defects in homologous recombination, were highly variable both within and between patients. Irrespective of histotype, we observed a smaller than expected number of private mutations, suggesting that ancestral clones accumulated large mutation burdens immediately prior to metastasis. Single-region whole-genome sequencing of from 20 patients showed that tumors in ever-smokers with the strongest tobacco signatures were associated with germline variants in genes implicated in the repair of cigarette-induced DNA damage. Our results suggest that lung cancer precursors in ever-smokers accumulate large numbers of mutations prior to the formation of frank malignancy followed by rapid metastatic spread. In advanced lung cancer, germline variants in DNA repair genes may interact with the airway environment to influence the pattern of founder mutations, whereas similar interactions with the tumor microenvironment may play a role in the acquisition of mutations following metastasis.


Subject(s)
Genetic Heterogeneity , Lung Neoplasms/genetics , Thoracic Neoplasms/genetics , Thoracic Neoplasms/secondary , Whole Genome Sequencing/methods , Adenocarcinoma of Lung/genetics , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/classification , Carcinoma, Squamous Cell/genetics , DNA Copy Number Variations , Female , Founder Effect , Gene-Environment Interaction , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Small Cell Lung Carcinoma/genetics , Tumor Microenvironment
19.
Nat Commun ; 9(1): 4903, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30464171

ABSTRACT

Mammalian wounds typically heal by fibrotic repair without hair follicle (HF) regeneration. Fibrosis and regeneration are currently considered the opposite end of wound healing. This study sought to determine if scar could be remodeled to promote healing with HF regeneration. Here, we identify that activation of the Sonic hedgehog (Shh) pathway reinstalls a regenerative dermal niche, called dermal papilla, which is required and sufficient for HF neogenesis (HFN). Epidermal Shh overexpression or constitutive Smoothened dermal activation results in extensive HFN in wounds that otherwise end in scarring. While long-term Wnt activation is associated with fibrosis, Shh signal activation in Wnt active cells promotes the dermal papilla fate in scarring wounds. These studies demonstrate that mechanisms of scarring and regeneration are not distant from one another and that wound repair can be redirected to promote regeneration following injury by modifying a key dermal signal.


Subject(s)
Dermis/physiology , Fibroblasts/physiology , Hair Follicle/physiology , Hedgehog Proteins/metabolism , Wound Healing , Animals , Carcinoma, Basal Cell/etiology , Cicatrix/metabolism , Collagen/metabolism , Mice , Skin Neoplasms/etiology , Wnt Signaling Pathway
20.
Sci Transl Med ; 10(451)2018 07 25.
Article in English | MEDLINE | ID: mdl-30045976

ABSTRACT

Resistance to platinum chemotherapy is a long-standing problem in the management of lung adenocarcinoma. Using a whole-genome synthetic lethal RNA interference screen, we identified activin signaling as a critical mediator of innate platinum resistance. The transforming growth factor-ß (TGFß) superfamily ligands activin A and growth differentiation factor 11 (GDF11) mediated resistance via their cognate receptors through TGFß-activated kinase 1 (TAK1), rather than through the SMAD family of transcription factors. Inhibition of activin receptor signaling or blockade of activin A and GDF11 by the endogenous protein follistatin overcame this resistance. Consistent with the role of activin signaling in acute renal injury, both therapeutic interventions attenuated acute cisplatin-induced nephrotoxicity, its major dose-limiting side effect. This cancer-specific enhancement of platinum-induced cell death has the potential to dramatically improve the safety and efficacy of chemotherapy in lung cancer patients.


Subject(s)
Activins/metabolism , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/drug therapy , Platinum/therapeutic use , A549 Cells , Animals , Carboplatin/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Follistatin/therapeutic use , Humans , Male , Mice , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL