Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
Eur Heart J ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39217447

ABSTRACT

BACKGROUND AND AIMS: The role of biomarker testing in the management of obstructive hypertrophic cardiomyopathy (oHCM) is not well defined. This pre-specified analysis of SEQUOIA-HCM (NCT05186818) sought to define the associations between clinical characteristics and baseline concentrations of N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin I (hs-cTnI), and to evaluate effect of treatment with aficamten on biomarker concentrations. METHODS: Cardiac biomarkers were measured at baseline and serially throughout the study. Regression analyses determined predictors of baseline NT-proBNP and hs-cTnI concentrations, and to evaluate whether early changes in these biomarkers relate to later changes in left ventricular outflow tract gradient (LVOT-G), other echocardiographic measures, health status, and functional capacity. RESULTS: Baseline concentration of NT-proBNP was associated with LVOT-G and measures of diastolic function, while hs-cTnI was associated with left ventricular thickness. Within 8 weeks of treatment with aficamten, NT-proBNP was reduced by 79% (95% CI 83%-76%, P < .001) and hs-cTnI by 41% (95% CI 49%-32%, P < .001); both biomarkers reverted to baseline after washout. Reductions in NT-proBNP and hs-cTnI by 24 weeks were strongly associated with a lowering of LVOT-G, improvement in health status, and increased peak oxygen uptake. NT-proBNP reduction strongly correlated with the majority of improvements in exercise capacity. Furthermore, the change in NT-proBNP by Week 2 was associated with the 24-week change in key endpoints. CONCLUSIONS: NT-proBNP and hs-cTnI concentrations are associated with key variables in oHCM. Serial measurement of NT-proBNP and hs-cTnI appears to reflect clinical response to aficamten therapy.

2.
Eur J Hum Genet ; 32(9): 1045-1052, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972962

ABSTRACT

Cardiomyopathies are a group of inherited heart muscle disorders. Expressivity is variable and while sometimes mild, complications can result in sudden cardiac death (SCD) at any age, heart failure and stroke. In around a third of patients a monogenic cause is identifiable, and development of genetic therapies that aim to correct the underlying genetic defect is underway. Here we describe results of a survey designed to understand preliminary views of the patient community about genetic therapies in the context of disease burden. The internet survey was publicized with a bespoke information video via patient support groups in the UK and USA; 634 people responded of whom 96% had a personal and/or family history of cardiomyopathy. Findings show that concern about cardiomyopathy-related issues with a future dimension, such as disease progression, is significantly greater than concern about current issues. A total of 93.6% thought that genetic therapies should be developed for cardiomyopathy. A majority would consider participation in a genetic therapy trial in six scenarios varying by age and clinical situation significantly more in the scenario of an adult with symptomatic disease and evident progression than an asymptomatic adult with SCD risk, or a child. In all scenarios, a majority said that the chance genetic therapy would stop or slow progression, and risk of serious adverse and unintended effects, were important considerations. Qualitative analysis of free-text responses found that concern was often informed by family experience. Patient consideration of genetic therapy is likely to require individualized assessment of the benefits and risks.


Subject(s)
Cardiomyopathies , Genetic Therapy , Humans , Cardiomyopathies/genetics , Cardiomyopathies/therapy , Adult , Male , Middle Aged , Female , Aged , Surveys and Questionnaires , Adolescent
3.
Eur Heart J Digit Health ; 5(4): 416-426, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39081936

ABSTRACT

Aims: Recently, deep learning artificial intelligence (AI) models have been trained to detect cardiovascular conditions, including hypertrophic cardiomyopathy (HCM), from the 12-lead electrocardiogram (ECG). In this external validation study, we sought to assess the performance of an AI-ECG algorithm for detecting HCM in diverse international cohorts. Methods and results: A convolutional neural network-based AI-ECG algorithm was developed previously in a single-centre North American HCM cohort (Mayo Clinic). This algorithm was applied to the raw 12-lead ECG data of patients with HCM and non-HCM controls from three external cohorts (Bern, Switzerland; Oxford, UK; and Seoul, South Korea). The algorithm's ability to distinguish HCM vs. non-HCM status from the ECG alone was examined. A total of 773 patients with HCM and 3867 non-HCM controls were included across three sites in the merged external validation cohort. The HCM study sample comprised 54.6% East Asian, 43.2% White, and 2.2% Black patients. Median AI-ECG probabilities of HCM were 85% for patients with HCM and 0.3% for controls (P < 0.001). Overall, the AI-ECG algorithm had an area under the receiver operating characteristic curve (AUC) of 0.922 [95% confidence interval (CI) 0.910-0.934], with diagnostic accuracy 86.9%, sensitivity 82.8%, and specificity 87.7% for HCM detection. In age- and sex-matched analysis (case-control ratio 1:2), the AUC was 0.921 (95% CI 0.909-0.934) with accuracy 88.5%, sensitivity 82.8%, and specificity 90.4%. Conclusion: The AI-ECG algorithm determined HCM status from the 12-lead ECG with high accuracy in diverse international cohorts, providing evidence for external validity. The value of this algorithm in improving HCM detection in clinical practice and screening settings requires prospective evaluation.

4.
J Am Heart Assoc ; 13(15): e035993, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39056349

ABSTRACT

BACKGROUND: Aficamten, a novel cardiac myosin inhibitor, reversibly reduces cardiac hypercontractility in obstructive hypertrophic cardiomyopathy. We present a prespecified analysis of the pharmacokinetics, pharmacodynamics, and safety of aficamten in SEQUOIA-HCM (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM). METHODS AND RESULTS: A total of 282 patients with obstructive hypertrophic cardiomyopathy were randomized 1:1 to daily aficamten (5-20 mg) or placebo between February 1, 2022, and May 15, 2023. Aficamten dosing targeted the lowest effective dose for achieving site-interpreted Valsalva left ventricular outflow tract gradient <30 mm Hg with left ventricular ejection fraction (LVEF) ≥50%. End points were evaluated during titration (day 1 to week 8), maintenance (weeks 8-24), and washout (weeks 24-28), and included major adverse cardiac events, new-onset atrial fibrillation, implantable cardioverter-defibrillator discharges, LVEF <50%, and treatment-emergent adverse events. At week 8, 3.6%, 12.9%, 35%, and 48.6% of patients achieved 5-, 10-, 15-, and 20-mg doses, respectively. Baseline characteristics were similar across groups. Aficamten concentration increased by dose and remained stable during maintenance. During the treatment period, LVEF decreased by -0.9% (95% CI, -1.3 to -0.6) per 100 ng/mL aficamten exposure. Seven (4.9%) patients taking aficamten underwent per-protocol dose reduction for site-interpreted LVEF <50%. There were no treatment interruptions or heart failure worsening for LVEF <50%. No major adverse cardiovascular events were associated with aficamten, and treatment-emergent adverse events were similar between treatment groups, including atrial fibrillation. CONCLUSIONS: A site-based dosing algorithm targeting the lowest effective aficamten dose reduced left ventricular outflow tract gradient with a favorable safety profile throughout SEQUOIA-HCM. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique Identifier: NCT05186818.


Subject(s)
Cardiomyopathy, Hypertrophic , Stroke Volume , Ventricular Function, Left , Humans , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/diagnosis , Male , Female , Middle Aged , Aged , Ventricular Function, Left/drug effects , Stroke Volume/drug effects , Treatment Outcome , Double-Blind Method , Dose-Response Relationship, Drug , Adult , Atrial Fibrillation/drug therapy , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Benzylamines , Uracil/analogs & derivatives
5.
JAMA ; 332(3): 204-213, 2024 07 16.
Article in English | MEDLINE | ID: mdl-38900490

ABSTRACT

Importance: Sudden death and cardiac arrest frequently occur without explanation, even after a thorough clinical evaluation. Calcium release deficiency syndrome (CRDS), a life-threatening genetic arrhythmia syndrome, is undetectable with standard testing and leads to unexplained cardiac arrest. Objective: To explore the cardiac repolarization response on an electrocardiogram after brief tachycardia and a pause as a clinical diagnostic test for CRDS. Design, Setting, and Participants: An international, multicenter, case-control study including individual cases of CRDS, 3 patient control groups (individuals with suspected supraventricular tachycardia; survivors of unexplained cardiac arrest [UCA]; and individuals with genotype-positive catecholaminergic polymorphic ventricular tachycardia [CPVT]), and genetic mouse models (CRDS, wild type, and CPVT were used to define the cellular mechanism) conducted at 10 centers in 7 countries. Patient tracings were recorded between June 2005 and December 2023, and the analyses were performed from April 2023 to December 2023. Intervention: Brief tachycardia and a subsequent pause (either spontaneous or mediated through cardiac pacing). Main Outcomes and Measures: Change in QT interval and change in T-wave amplitude (defined as the difference between their absolute values on the postpause sinus beat and the last beat prior to tachycardia). Results: Among 10 case patients with CRDS, 45 control patients with suspected supraventricular tachycardia, 10 control patients who experienced UCA, and 3 control patients with genotype-positive CPVT, the median change in T-wave amplitude on the postpause sinus beat (after brief ventricular tachycardia at ≥150 beats/min) was higher in patients with CRDS (P < .001). The smallest change in T-wave amplitude was 0.250 mV for a CRDS case patient compared with the largest change in T-wave amplitude of 0.160 mV for a control patient, indicating 100% discrimination. Although the median change in QT interval was longer in CRDS cases (P = .002), an overlap between the cases and controls was present. The genetic mouse models recapitulated the findings observed in humans and suggested the repolarization response was secondary to a pathologically large systolic release of calcium from the sarcoplasmic reticulum. Conclusions and Relevance: There is a unique repolarization response on an electrocardiogram after provocation with brief tachycardia and a subsequent pause in CRDS cases and mouse models, which is absent from the controls. If these findings are confirmed in larger studies, this easy to perform maneuver may serve as an effective clinical diagnostic test for CRDS and become an important part of the evaluation of cardiac arrest.


Subject(s)
Electrocardiography , Humans , Mice , Case-Control Studies , Male , Animals , Female , Adult , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/etiology , Heart Arrest/etiology , Heart Arrest/diagnosis , Calcium/metabolism , Calcium/blood , Tachycardia, Supraventricular/diagnosis , Tachycardia, Supraventricular/physiopathology , Tachycardia, Supraventricular/etiology , Middle Aged , Disease Models, Animal , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , Adolescent , Young Adult , Ryanodine Receptor Calcium Release Channel/genetics
6.
N Engl J Med ; 390(20): 1849-1861, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38739079

ABSTRACT

BACKGROUND: One of the major determinants of exercise intolerance and limiting symptoms among patients with obstructive hypertrophic cardiomyopathy (HCM) is an elevated intracardiac pressure resulting from left ventricular outflow tract obstruction. Aficamten is an oral selective cardiac myosin inhibitor that reduces left ventricular outflow tract gradients by mitigating cardiac hypercontractility. METHODS: In this phase 3, double-blind trial, we randomly assigned adults with symptomatic obstructive HCM to receive aficamten (starting dose, 5 mg; maximum dose, 20 mg) or placebo for 24 weeks, with dose adjustment based on echocardiography results. The primary end point was the change from baseline to week 24 in the peak oxygen uptake as assessed by cardiopulmonary exercise testing. The 10 prespecified secondary end points (tested hierarchically) were change in the Kansas City Cardiomyopathy Questionnaire clinical summary score (KCCQ-CSS), improvement in the New York Heart Association (NYHA) functional class, change in the pressure gradient after the Valsalva maneuver, occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver, and duration of eligibility for septal reduction therapy (all assessed at week 24); change in the KCCQ-CSS, improvement in the NYHA functional class, change in the pressure gradient after the Valsalva maneuver, and occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver (all assessed at week 12); and change in the total workload as assessed by cardiopulmonary exercise testing at week 24. RESULTS: A total of 282 patients underwent randomization: 142 to the aficamten group and 140 to the placebo group. The mean age was 59.1 years, 59.2% were men, the baseline mean resting left ventricular outflow tract gradient was 55.1 mm Hg, and the baseline mean left ventricular ejection fraction was 74.8%. At 24 weeks, the mean change in the peak oxygen uptake was 1.8 ml per kilogram per minute (95% confidence interval [CI], 1.2 to 2.3) in the aficamten group and 0.0 ml per kilogram per minute (95% CI, -0.5 to 0.5) in the placebo group (least-squares mean between-group difference, 1.7 ml per kilogram per minute; 95% CI, 1.0 to 2.4; P<0.001). The results for all 10 secondary end points were significantly improved with aficamten as compared with placebo. The incidence of adverse events appeared to be similar in the two groups. CONCLUSIONS: Among patients with symptomatic obstructive HCM, treatment with aficamten resulted in a significantly greater improvement in peak oxygen uptake than placebo. (Funded by Cytokinetics; SEQUOIA-HCM ClinicalTrials.gov number, NCT05186818.).


Subject(s)
Cardiomyopathy, Hypertrophic , Cardiovascular Agents , Exercise Test , Aged , Female , Humans , Male , Middle Aged , Benzylamines , Cardiac Myosins/antagonists & inhibitors , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/physiopathology , Double-Blind Method , Exercise Tolerance/drug effects , Oxygen Consumption/drug effects , Uracil/analogs & derivatives , Valsalva Maneuver , Ventricular Outflow Obstruction/drug therapy , Ventricular Outflow Obstruction/physiopathology , Ventricular Outflow Obstruction/etiology , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Administration, Oral
7.
Cardiovasc Res ; 120(8): 914-926, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38646743

ABSTRACT

AIMS: Lethal arrhythmias in hypertrophic cardiomyopathy (HCM) are widely attributed to myocardial ischaemia and fibrosis. How these factors modulate arrhythmic risk remains largely unknown, especially as invasive mapping protocols are not routinely used in these patients. By leveraging multiscale digital twin technologies, we aim to investigate ischaemic mechanisms of increased arrhythmic risk in HCM. METHODS AND RESULTS: Computational models of human HCM cardiomyocytes, tissue, and ventricles were used to simulate outcomes of Phase 1A acute myocardial ischaemia. Cellular response predictions were validated with patch-clamp studies of human HCM cardiomyocytes (n = 12 cells, N = 5 patients). Ventricular simulations were informed by typical distributions of subendocardial/transmural ischaemia as analysed in perfusion scans (N = 28 patients). S1-S2 pacing protocols were used to quantify arrhythmic risk for scenarios in which regions of septal obstructive hypertrophy were affected by (i) ischaemia, (ii) ischaemia and impaired repolarization, and (iii) ischaemia, impaired repolarization, and diffuse fibrosis. HCM cardiomyocytes exhibited enhanced action potential and abnormal effective refractory period shortening to ischaemic insults. Analysis of ∼75 000 re-entry induction cases revealed that the abnormal HCM cellular response enabled establishment of arrhythmia at milder ischaemia than otherwise possible in healthy myocardium, due to larger refractoriness gradients that promoted conduction block. Arrhythmias were more easily sustained in transmural than subendocardial ischaemia. Mechanisms of ischaemia-fibrosis interaction were strongly electrophysiology dependent. Fibrosis enabled asymmetric re-entry patterns and break-up into sustained ventricular tachycardia. CONCLUSION: HCM ventricles exhibited an increased risk to non-sustained and sustained re-entry, largely dominated by an impaired cellular response and deleterious interactions with the diffuse fibrotic substrate.


Subject(s)
Action Potentials , Arrhythmias, Cardiac , Cardiomyopathy, Hypertrophic , Fibrosis , Models, Cardiovascular , Myocardial Ischemia , Myocytes, Cardiac , Humans , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/pathology , Myocardial Ischemia/physiopathology , Myocardial Ischemia/pathology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/etiology , Heart Rate , Risk Factors , Middle Aged , Male , Cardiac Pacing, Artificial , Female , Computer Simulation , Refractory Period, Electrophysiological , Risk Assessment
8.
J Am Coll Cardiol ; 83(21): 2037-2048, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38599256

ABSTRACT

BACKGROUND: In nonobstructive hypertrophic cardiomyopathy (nHCM), there are no approved medical therapies. Impaired myocardial energetics is a potential cause of symptoms and exercise limitation. Ninerafaxstat, a novel cardiac mitotrope, enhances cardiac energetics. OBJECTIVES: This study sought to evaluate the safety and efficacy of ninerafaxstat in nHCM. METHODS: Patients with hypertrophic cardiomyopathy and left ventricular outflow tract gradient <30 mm Hg, ejection fraction ≥50%, and peak oxygen consumption <80% predicted were randomized to ninerafaxstat 200 mg twice daily or placebo (1:1) for 12 weeks. The primary endpoint was safety and tolerability, with efficacy outcomes also assessed as secondary endpoints. RESULTS: A total of 67 patients with nHCM were enrolled at 12 centers (57 ± 11.8 years of age; 55% women). Serious adverse events occurred in 11.8% (n = 4 of 34) in the ninerafaxstat group and 6.1% (n = 2 of 33) of patients in the placebo group. From baseline to 12 weeks, ninerafaxstat was associated with significantly better VE/Vco2 (ventilatory efficiency) slope compared with placebo with a least-squares (LS) mean difference between the groups of -2.1 (95% CI: -3.6 to -0.6; P = 0.006), with no significant difference in peak VO2 (P = 0.90). The Kansas City Cardiomyopathy Questionnaire Clinical Summary Score was directionally, though not significantly, improved with ninerafaxstat vs placebo (LS mean 3.2; 95% CI: -2.9 to 9.2; P = 0.30); however, it was statistically significant when analyzed post hoc in the 35 patients with baseline Kansas City Cardiomyopathy Questionnaire Clinical Summary Score ≤80 (LS mean 9.4; 95% CI: 0.3-18.5; P = 0.04). CONCLUSIONS: In symptomatic nHCM, novel drug therapy targeting myocardial energetics was safe and well tolerated and associated with better exercise performance and health status among those most symptomatically limited. The findings support assessing ninerafaxstat in a phase 3 study.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/drug therapy , Female , Male , Middle Aged , Double-Blind Method , Treatment Outcome , Aged , Oxygen Consumption/drug effects
9.
J Card Fail ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38493832

ABSTRACT

BACKGROUND: This open-label phase 2 trial evaluated the safety and efficacy of aficamten in patients with nonobstructive hypertrophic cardiomyopathy (nHCM). METHODS: Patients with symptomatic nHCM (left ventricular outflow tract obstruction gradient ≤ 30 mmHg, left ventricular ejection fraction [LVEF] ≥ 60%, N-terminal pro-B-type natriuretic peptide [NT-proBNP] > 300 pg/mL) received aficamten 5-15 mg once daily (doses adjusted according to echocardiographic LVEF) for 10 weeks. RESULTS: We enrolled 41 patients (mean ± SD age 56 ± 16 years; 59% female). At Week 10, 22 (55%) patients experienced an improvement of ≥ 1 New York Heart Association class; 11 (29%) became asymptomatic. Clinically relevant improvements in Kansas City Cardiomyopathy Questionnaire Clinical Summary Scores occurred in 22 (55%) patients. Symptom relief was paralleled by reductions in NT-proBNP levels (56%; P < 0.001) and high-sensitivity cardiac troponin I (22%; P < 0.005). Modest reductions in LVEF (mean ± SD) of -5.4% ± 10 to 64.6% ± 9.1 were observed. Three (8%) patients had asymptomatic reduction in LVEF < 50% (range: 41%-48%), all returning to normal after 2 weeks of washout. One patient with prior history of aborted sudden cardiac death experienced a fatal arrhythmia during the study. CONCLUSIONS: Aficamten administration for symptomatic nHCM was generally safe and was associated with improvements in heart failure symptoms and cardiac biomarkers. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04219826.

10.
FASEB J ; 38(6): e23505, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38507255

ABSTRACT

Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-α transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of ß-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of ß-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-α signaling network may be a specific metabolic therapeutic target in AS.


Subject(s)
Aortic Valve Stenosis , Cardiomyopathy, Hypertrophic , Humans , Peroxisome Proliferator-Activated Receptors , Cardiomyopathy, Hypertrophic/genetics , Hypertrophy, Left Ventricular/genetics , Aortic Valve Stenosis/genetics , Fatty Acids/metabolism
12.
JACC Heart Fail ; 12(1): 199-215, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38032573

ABSTRACT

Patients with obstructive hypertrophic cardiomyopathy (oHCM) have increased risk of arrhythmia, stroke, heart failure, and sudden death. Contemporary management of oHCM has decreased annual hospitalization and mortality rates, yet patients have worsening health-related quality of life due to impaired exercise capacity and persistent residual symptoms. Here we consider the design of clinical trials evaluating potential oHCM therapies in the context of SEQUOIA-HCM (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM). This large, phase 3 trial is now fully enrolled (N = 282). Baseline characteristics reflect an ethnically diverse population with characteristics typical of patients encountered clinically with substantial functional and symptom burden. The study will assess the effect of aficamten vs placebo, in addition to standard-of-care medications, on functional capacity and symptoms over 24 weeks. Future clinical trials could model the approach in SEQUOIA-HCM to evaluate the effect of potential therapies on the burden of oHCM. (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM [SEQUOIA-HCM]; NCT05186818).


Subject(s)
Cardiomyopathy, Hypertrophic , Heart Failure , Sequoia , Humans , Exercise Tolerance , Quality of Life , Heart Failure/drug therapy , Cardiomyopathy, Hypertrophic/complications
13.
Circ Genom Precis Med ; 16(6): e004200, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38014537

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is an important cause of sudden cardiac death associated with heterogeneous phenotypes, but there is no systematic framework for classifying morphology or assessing associated risks. Here, we quantitatively survey genotype-phenotype associations in HCM to derive a data-driven taxonomy of disease expression. METHODS: We enrolled 436 patients with HCM (median age, 60 years; 28.8% women) with clinical, genetic, and imaging data. An independent cohort of 60 patients with HCM from Singapore (median age, 59 years; 11% women) and a reference population from the UK Biobank (n=16 691; mean age, 55 years; 52.5% women) were also recruited. We used machine learning to analyze the 3-dimensional structure of the left ventricle from cardiac magnetic resonance imaging and build a tree-based classification of HCM phenotypes. Genotype and mortality risk distributions were projected on the tree. RESULTS: Carriers of pathogenic or likely pathogenic variants for HCM had lower left ventricular mass, but greater basal septal hypertrophy, with reduced life span (mean follow-up, 9.9 years) compared with genotype negative individuals (hazard ratio, 2.66 [95% CI, 1.42-4.96]; P<0.002). Four main phenotypic branches were identified using unsupervised learning of 3-dimensional shape: (1) nonsarcomeric hypertrophy with coexisting hypertension; (2) diffuse and basal asymmetrical hypertrophy associated with outflow tract obstruction; (3) isolated basal hypertrophy; and (4) milder nonobstructive hypertrophy enriched for familial sarcomeric HCM (odds ratio for pathogenic or likely pathogenic variants, 2.18 [95% CI, 1.93-2.28]; P=0.0001). Polygenic risk for HCM was also associated with different patterns and degrees of disease expression. The model was generalizable to an independent cohort (trustworthiness, M1: 0.86-0.88). CONCLUSIONS: We report a data-driven taxonomy of HCM for identifying groups of patients with similar morphology while preserving a continuum of disease severity, genetic risk, and outcomes. This approach will be of value in understanding the causes and consequences of disease diversity.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial , Cardiomyopathy, Hypertrophic , Humans , Female , Middle Aged , Male , Phenotype , Genotype , Hypertrophy/complications
14.
Am J Hum Genet ; 110(9): 1482-1495, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37652022

ABSTRACT

Understanding the penetrance of pathogenic variants identified as secondary findings (SFs) is of paramount importance with the growing availability of genetic testing. We estimated penetrance through large-scale analyses of individuals referred for diagnostic sequencing for hypertrophic cardiomyopathy (HCM; 10,400 affected individuals, 1,332 variants) and dilated cardiomyopathy (DCM; 2,564 affected individuals, 663 variants), using a cross-sectional approach comparing allele frequencies against reference populations (293,226 participants from UK Biobank and gnomAD). We generated updated prevalence estimates for HCM (1:543) and DCM (1:220). In aggregate, the penetrance by late adulthood of rare, pathogenic variants (23% for HCM, 35% for DCM) and likely pathogenic variants (7% for HCM, 10% for DCM) was substantial for dominant cardiomyopathy (CM). Penetrance was significantly higher for variant subgroups annotated as loss of function or ultra-rare and for males compared to females for variants in HCM-associated genes. We estimated variant-specific penetrance for 316 recurrent variants most likely to be identified as SFs (found in 51% of HCM- and 17% of DCM-affected individuals). 49 variants were observed at least ten times (14% of affected individuals) in HCM-associated genes. Median penetrance was 14.6% (±14.4% SD). We explore estimates of penetrance by age, sex, and ancestry and simulate the impact of including future cohorts. This dataset reports penetrance of individual variants at scale and will inform the management of individuals undergoing genetic screening for SFs. While most variants had low penetrance and the costs and harms of screening are unclear, some individuals with highly penetrant variants may benefit from SFs.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Cardiomyopathy, Hypertrophic , Female , Male , Humans , Adult , Penetrance , Cardiomyopathies/genetics , Cardiomyopathy, Dilated/genetics , Gene Frequency
16.
J Mol Cell Cardiol ; 180: 44-57, 2023 07.
Article in English | MEDLINE | ID: mdl-37127261

ABSTRACT

We compared commonly used BAPTA-derived chemical Ca2+ dyes (fura2, Fluo-4, and Rhod-2) with a newer genetically encoded indicator (R-GECO) in single cell models of the heart. We assessed their performance and effects on cardiomyocyte contractility, determining fluorescent signal-to-noise ratios and sarcomere shortening in primary ventricular myocytes from adult mouse and guinea pig, and in human iPSC-derived cardiomyocytes. Chemical Ca2+ dyes displayed dose-dependent contractile impairment in all cell types, and we observed a negative correlation between contraction and fluorescence signal-to-noise ratio, particularly for fura2 and Fluo-4. R-GECO had no effect on sarcomere shortening. BAPTA-based dyes, but not R-GECO, inhibited in vitro acto-myosin ATPase activity. The presence of fura2 accentuated or diminished changes in contractility and Ca2+ handling caused by small molecule modulators of contractility and intracellular ionic homeostasis (mavacamten, levosimendan, and flecainide), but this was not observed when using R-GECO in adult guinea pig left ventricular cardiomyocytes. Ca2+ handling studies are necessary for cardiotoxicity assessments of small molecules intended for clinical use. Caution should be exercised when interpreting small molecule studies assessing contractile effects and Ca2+ transients derived from BAPTA-like chemical Ca2+ dyes in cellular assays, a common platform for cardiac toxicology testing and mechanistic investigation of cardiac disease physiology and treatment.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Guinea Pigs , Humans , Mice , Calcium/metabolism , Coloring Agents/metabolism , Coloring Agents/pharmacology , Induced Pluripotent Stem Cells/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Swine
17.
Circ Genom Precis Med ; 16(3): 207-215, 2023 06.
Article in English | MEDLINE | ID: mdl-37017090

ABSTRACT

BACKGROUND: A large proportion of genetic risk remains unexplained for structural heart disease involving the interventricular septum (IVS) including hypertrophic cardiomyopathy and ventricular septal defects. This study sought to develop a reproducible proxy of IVS structure from standard medical imaging, discover novel genetic determinants of IVS structure, and relate these loci to diseases of the IVS, hypertrophic cardiomyopathy, and ventricular septal defect. METHODS: We estimated the cross-sectional area of the IVS from the 4-chamber view of cardiac magnetic resonance imaging in 32 219 individuals from the UK Biobank which was used as the basis of genome wide association studies and Mendelian randomization. RESULTS: Measures of IVS cross-sectional area at diastole were a strong proxy for the 3-dimensional volume of the IVS (Pearson r=0.814, P=0.004), and correlated with anthropometric measures, blood pressure, and diagnostic codes related to cardiovascular physiology. Seven loci with clear genomic consequence and relevance to cardiovascular biology were uncovered by genome wide association studies, most notably a single nucleotide polymorphism in an intron of CDKN1A (rs2376620; ß, 7.7 mm2 [95% CI, 5.8-11.0]; P=6.0×10-10), and a common inversion incorporating KANSL1 predicted to disrupt local chromatin structure (ß, 8.4 mm2 [95% CI, 6.3-10.9]; P=4.2×10-14). Mendelian randomization suggested that inheritance of larger IVS cross-sectional area at diastole was strongly associated with hypertrophic cardiomyopathy risk (pIVW=4.6×10-10) while inheritance of smaller IVS cross-sectional area at diastole was associated with risk for ventricular septal defect (pIVW=0.007). CONCLUSIONS: Automated estimates of cross-sectional area of the IVS supports discovery of novel loci related to cardiac development and Mendelian disease. Inheritance of genetic liability for either small or large IVS, appears to confer risk for ventricular septal defect or hypertrophic cardiomyopathy, respectively. These data suggest that a proportion of risk for structural and congenital heart disease can be localized to the common genetic determinants of size and shape of cardiovascular anatomy.


Subject(s)
Cardiomyopathy, Hypertrophic , Heart Septal Defects, Ventricular , Humans , Genome-Wide Association Study , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/complications , Heart Septal Defects, Ventricular/diagnostic imaging , Heart Septal Defects, Ventricular/genetics , Heart Septal Defects, Ventricular/complications , Heart , Magnetic Resonance Imaging
18.
Cells ; 12(5)2023 02 24.
Article in English | MEDLINE | ID: mdl-36899856

ABSTRACT

Pathogenic variants in ACTN2, coding for alpha-actinin 2, are known to be rare causes of Hypertrophic Cardiomyopathy. However, little is known about the underlying disease mechanisms. Adult heterozygous mice carrying the Actn2 p.Met228Thr variant were phenotyped by echocardiography. For homozygous mice, viable E15.5 embryonic hearts were analysed by High Resolution Episcopic Microscopy and wholemount staining, complemented by unbiased proteomics, qPCR and Western blotting. Heterozygous Actn2 p.Met228Thr mice have no overt phenotype. Only mature males show molecular parameters indicative of cardiomyopathy. By contrast, the variant is embryonically lethal in the homozygous setting and E15.5 hearts show multiple morphological abnormalities. Molecular analyses, including unbiased proteomics, identified quantitative abnormalities in sarcomeric parameters, cell-cycle defects and mitochondrial dysfunction. The mutant alpha-actinin protein is found to be destabilised, associated with increased activity of the ubiquitin-proteasomal system. This missense variant in alpha-actinin renders the protein less stable. In response, the ubiquitin-proteasomal system is activated; a mechanism that has been implicated in cardiomyopathies previously. In parallel, a lack of functional alpha-actinin is thought to cause energetic defects through mitochondrial dysfunction. This seems, together with cell-cycle defects, the likely cause of the death of the embryos. The defects also have wide-ranging morphological consequences.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Hypertrophic , Animals , Male , Mice , Actinin/metabolism , Heart , Ubiquitins
19.
Eur J Prev Cardiol ; 30(7): 583-591, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36702559

ABSTRACT

BACKGROUND: Inflammation has been implicated in the pathogenesis of coronary heart disease, but the relevance and independence of individual inflammatory proteins is uncertain. OBJECTIVE: To examine the relationships between a spectrum of inflammatory proteins and myocardial infarction (MI). METHODS AND RESULTS: A panel of 92 inflammatory proteins was assessed using an OLINK multiplex immunoassay among 432 MI cases (diagnosed < 66 years) and 323 controls. Logistic regression was used to estimate associations between individual proteins and MI, after adjustment for established cardiovascular risk factors and medication use, and stepwise regression to identify proteins with independent effects. Machine learning techniques (Boruta analysis and LASSO regression) and bioinformatic resources were used to examine the concordance of results with those obtained by conventional methods and explore the underlying biological processes to inform the validity of the associations. Among the 92 proteins studied, 62 (67%) had plasma concentrations above the lower limit of detection in at least 50% of samples. Of these, 15 individual proteins were significantly associated with MI after covariate adjustment and correction for multiple testing. Five of these 15 proteins (CDCP1, CD6, IL1-8R1, IL-6, and CXCL1) were independently associated with MI, with up to three-fold higher risks of MI per doubling in plasma concentrations. Findings were further validated using machine learning techniques and biologically focused analyses. CONCLUSIONS: This study, demonstrating independent relationships between five inflammatory proteins and MI, provides important novel insights into the inflammatory hypothesis of MI and the potential utility of proteomic analyses in precision medicine.


The PROCARDIS study conducted a hypothesis-free proteomic study using a panel of 92 inflammatory proteins in cases with early onset myocardial infarction (MI) and healthy controls and identified 15 proteins that were significantly associated with MI, including five proteins that independently contributed to risk of MI. The study used state-of-the-art analytical methods including conventional statistical analysis and machine learning approaches to characterize the proteomic associations with MI. It also integrated bioinformatic and genomic data to consider the biological relevance of the proteins independently associated with MI. The findings provide novel insights into the 'inflammatory basis' of MI and provide support for prioritizing a wider array of inflammatory proteins for further study than have been previously considered in order to discover if therapeutic modification could be used for treatment and prevention of MI.


Subject(s)
Coronary Disease , Myocardial Infarction , Humans , Proteomics , Myocardial Infarction/diagnosis , Inflammation/diagnosis , Logistic Models , Antigens, Neoplasm , Cell Adhesion Molecules
20.
Circ Res ; 132(4): 452-464, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36691918

ABSTRACT

BACKGROUND: Recognition of the importance of conventional lipid measures and the advent of novel lipid-lowering medications have prompted the need for more comprehensive lipid panels to guide use of emerging treatments for the prevention of coronary heart disease (CHD). This report assessed the relevance of 13 apolipoproteins measured using a single mass-spectrometry assay for risk of CHD in the PROCARDIS case-control study of CHD (941 cases/975 controls). METHODS: The associations of apolipoproteins with CHD were assessed after adjustment for established risk factors and correction for statin use. Apolipoproteins were grouped into 4 lipid-related classes [lipoprotein(a), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides] and their associations with CHD were adjusted for established CHD risk factors and conventional lipids. Analyses of these apolipoproteins in a subset of the ASCOT trial (Anglo-Scandinavian Cardiac Outcomes Trial) were used to assess their within-person variability and to estimate a correction for statin use. The findings in the PROCARDIS study were compared with those for incident cardiovascular disease in the Bruneck prospective study (n=688), including new measurements of Apo(a). RESULTS: Triglyceride-carrying apolipoproteins (ApoC1, ApoC3, and ApoE) were most strongly associated with the risk of CHD (2- to 3-fold higher odds ratios for top versus bottom quintile) independent of conventional lipid measures. Likewise, ApoB was independently associated with a 2-fold higher odds ratios of CHD. Lipoprotein(a) was measured using peptides from the Apo(a)-kringle repeat and Apo(a)-constant regions, but neither of these associations differed from the association with conventionally measured lipoprotein(a). Among HDL-related apolipoproteins, ApoA4 and ApoM were inversely related to CHD, independent of conventional lipid measures. The disease associations with all apolipoproteins were directionally consistent in the PROCARDIS and Bruneck studies, with the exception of ApoM. CONCLUSIONS: Apolipoproteins were associated with CHD independent of conventional risk factors and lipids, suggesting apolipoproteins could help to identify patients with residual lipid-related risk and guide personalized approaches to CHD risk reduction.


Subject(s)
Coronary Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Prospective Studies , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Case-Control Studies , Proteomics , Apolipoproteins , Risk Factors , Coronary Disease/epidemiology , Coronary Disease/etiology , Triglycerides , Cholesterol, HDL , Lipoprotein(a) , Apolipoproteins B/therapeutic use , Apolipoprotein A-I
SELECTION OF CITATIONS
SEARCH DETAIL