Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Acad Psychiatry ; 47(6): 628-629, 2023 12.
Article in English | MEDLINE | ID: mdl-37775706
2.
Sci Rep ; 12(1): 8786, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610294

ABSTRACT

The midsagittal area of the corpus callosum (CC) is frequently studied in relation to brain development, connectivity, and function. Here we quantify myelin characteristics from electron microscopy to understand more fully differential patterns of white matter development occurring within the CC. We subdivided midsagittal regions of the CC into: I-rostrum and genu, II-rostral body, III-anterior midbody, IV-posterior midbody, and V-isthmus and splenium. The sample represented capuchin monkeys ranging in age from 2 weeks to 35 years (Sapajus [Cebus] apella, n = 8). Measurements of myelin thickness, myelin fraction, and g-ratio were obtained in a systematic random fashion. We hypothesized there would be a period of rapid myelin growth within the CC in early development. Using a locally weighted regression analysis (LOESS), we found regional differences in myelin characteristics, with posterior regions showing more rapid increases in myelin thickness and sharper decreases in g-ratio in early development. The most anterior region showed the most sustained growth in myelin thickness. For all regions over the lifespan, myelin fraction increased, plateaued, and decreased. These results suggest differential patterns of nonlinear myelin growth occur early in development and well into adulthood in the CC of capuchin monkeys.


Subject(s)
Corpus Callosum , Sapajus , Animals , Cebus , Longevity , Myelin Sheath , Sapajus apella
3.
Am J Primatol ; 81(2): e22949, 2019 02.
Article in English | MEDLINE | ID: mdl-30620098

ABSTRACT

Executive control is a higher-level cognitive function that involves a range of different processes that are involved in the planning, coordination, execution, and inhibition of responses. Many of the processes associated with executive control, such as response inhibition and mental flexibility, decline with age. Degeneration of white matter architecture is considered to be the one of the key factors underlying cognitive decline associated with aging. Here we investigated how white matter changes of the corpus callosum were related to cognitive aging in common marmosets (Callithrix jacchus). We hypothesized that reduction in myelin thickness, myelin density, and myelin fraction of axonal fibers in the corpus callosum would be associated with performance on a task of executive function in a small sample of geriatric marmosets (n = 4) and young adult marmosets (n = 2). Our results indicated declines in myelin thickness, density, and myelin fraction with age. Considerable variability was detected on these characteristics of myelin and cognitive performance assessed via the detoured reach task. Age-related changes in myelin in Region II of the corpus callosum were predictive of cognitive performance on the detoured reach task. Thus the detoured reach task appears to also measure aspects of corticostriatal function in addition to prefrontal cortical function.


Subject(s)
Aging/physiology , Axons/pathology , Callithrix/physiology , Cognitive Dysfunction/physiopathology , Animals , Axons/ultrastructure , Corpus Callosum/physiopathology , Female , Male , Models, Animal , Myelin Sheath/pathology
SELECTION OF CITATIONS
SEARCH DETAIL