Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Bioeng ; 17(1): 49-65, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38435796

ABSTRACT

Purpose: Shear-mediated thrombosis is a clinically relevant phenomenon that underlies excessive arterial thrombosis and device-induced thrombosis. Red blood cells are known to mechanically contribute to physiological hemostasis through margination of platelets and vWF, facilitating the unfurling of vWF multimers, and increasing the fraction of thrombus-contacting platelets. Shear also plays a role in this phenomenon, increasing both the degree of margination and the near-wall forces experienced by vWF and platelets leading to unfurling and activation. Despite this, the contribution of red blood cells in shear-induced platelet aggregation has not been fully investigated-specifically the effect of elevated hematocrit has not yet been demonstrated. Methods: Here, a microfluidic model of a sudden expansion is presented as a platform for investigating platelet adhesion at hematocrits ranging from 0 to 60% and shear rates ranging from 1000 to 10,000 s-1. The sudden expansion geometry models nonphysiological flow separation characteristic to mechanical circulatory support devices, and the validatory framework of the FDA benchmark nozzle. PDMS microchannels were fabricated and coated with human collagen. Platelets were fluorescently tagged, and blood was reconstituted at variable hematocrit prior to perfusion experiments. Integrin function of selected blood samples was inhibited by a blocking antibody, and platelet adhesion and aggregation over the course of perfusion was monitored. Results: Increasing shear rates at physiological and elevated hematocrit levels facilitate robust platelet adhesion and formation of large aggregates. Shear-induced platelet aggregation is demonstrated to be dependent on both αIIbßIII function and the presence of red blood cells. Inhibition of αIIbßIII results in an 86.4% reduction in overall platelet adhesion and an 85.7% reduction in thrombus size at 20-60% hematocrit. Hematocrit levels of 20% are inadequate for effective platelet margination and subsequent vWF tethering, resulting in notable decreases in platelet adhesion at 5000 and 10,000 s-1 compared to 40% and 60%. Inhibition of αIIbßIII triggered dramatic reductions in overall thrombus coverage and large aggregate formation. Stability of platelets tethered by vWF are demonstrated to be αIIbßIII-dependent, as adhesion of single platelets treated with A2A9, an anti-αIIbßIII blocking antibody, is transient and did not lead to sustained thrombus formation. Conclusions: This study highlights driving factors in vWF-mediated platelet adhesion that are relevant to clinical suppression of shear-induced thrombosis and in vitro assays of platelet adhesion. Primarily, increasing hematocrit promotes platelet margination, permitting shear-induced platelet aggregation through αIIbßIII-mediated adhesion at supraphysiological shear rates. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-024-00796-0.

2.
Small ; 18(46): e2203751, 2022 11.
Article in English | MEDLINE | ID: mdl-36192159

ABSTRACT

Despite nearly a century of clinical use as a blood thinner, heparin's rapid serum clearance and potential to induce severe bleeding events continue to urge the development of more effective controlled delivery strategies. Subcutaneous depots that steadily release the anticoagulant into circulation represent a promising approach to reducing overdose frequency, sustaining therapeutic concentrations of heparin in plasma, and prolonging anticoagulant activity in a safe and effective manner. Subcutaneously deliverable heparin-peptide nanogranules that allow for long-lasting heparin bioavailability in the circulatory system, while enabling on-demand activation of heparin's anticoagulant effects in the thrombus microenvironment, are reported. Biophysical studies demonstrate this responsive behavior is due to the sequestration of heparin within self-assembling peptide nanofibrils and its mechanically actuated decoupling to elicit antithrombotic effects at the clotting site. In vivo studies show these unique properties converge to allow subcutaneous nanogranule depots to extend heparin serum concentrations for an order of magnitude longer than standard dosing regimens while enabling prolonged and controlled anticoagulant activity. This biohybrid delivery system demonstrates a potentially scalable platform for the development of safer, easier to administer, and more effective antithrombotic nanotechnologies.


Subject(s)
Heparin , Thrombosis , Humans , Heparin/chemistry , Fibrinolytic Agents/therapeutic use , Thrombosis/drug therapy , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Anticoagulants/chemistry , Peptides
3.
Adv Healthc Mater ; 10(16): e2100520, 2021 08.
Article in English | MEDLINE | ID: mdl-34137205

ABSTRACT

Deep vein thrombosis (DVT) is a life-threatening blood clotting condition that, if undetected, can cause deadly pulmonary embolisms. Critical to its clinical management is the ability to rapidly detect, monitor, and treat thrombosis. However, current diagnostic imaging modalities lack the resolution required to precisely localize vessel occlusions and enable clot monitoring in real time. Here, we rationally design fibrinogen-mimicking fluoropeptide nanoemulsions, or nanopeptisomes (NPeps), that allow contrast-enhanced ultrasound imaging of thrombi and synchronous inhibition of clot growth. The theranostic duality of NPeps is imparted via their intrinsic binding to integrins overexpressed on platelets activated during coagulation. The platelet-bound nanoemulsions can be vaporized and oscillate in an applied acoustic field to enable contrast-enhanced Doppler ultrasound detection of thrombi. Concurrently, nanoemulsions bound to platelets competitively inhibit secondary platelet-fibrinogen binding to disrupt further clot growth. Continued development of this synchronous theranostic platform may open new opportunities for image-guided, non-invasive, interventions for DVT and other vascular diseases.


Subject(s)
Thrombosis , Venous Thrombosis , Blood Coagulation , Blood Platelets , Humans , Ultrasonography , Venous Thrombosis/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...