Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 14(4): 499-505, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37077397

ABSTRACT

HTL0041178 (1), a potent GPR52 agonist with a promising pharmacokinetic profile and exhibiting oral activity in preclinical models, has been identified. This molecule was the outcome of a judicious molecular property-based optimization approach, focusing on balancing potency against metabolic stability, solubility, permeability, and P-gp efflux.

2.
ACS Med Chem Lett ; 13(11): 1776-1782, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36385934

ABSTRACT

The diastereomeric macrocyclic calcitonin gene-related peptide (CGRP) antagonists HTL0029881 (3) and HTL0029882 (4), in which the stereochemistry of a spiro center is reversed, surprisingly demonstrate comparable potency. X-ray crystallographic characterization demonstrates that 3 binds to the CGRP receptor in a precedented manner but that 4 binds in an unprecedented, unexpected, and radically different manner. The observation of this phenomenon is noteworthy and may open novel avenues for CGRP receptor antagonist design.

3.
ACS Chem Neurosci ; 13(6): 751-765, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35245037

ABSTRACT

A series of macrocyclic calcitonin gene-related peptide (CGRP) receptor antagonists identified using structure-based design principles, exemplified by HTL0028016 (1) and HTL0028125 (2), is described. Structural characterization by X-ray crystallography of the interaction of two of the macrocycle antagonists with the CGRP receptor ectodomain is described, along with structure-activity relationships associated with point changes to the macrocyclic antagonists. The identification of non-peptidic/natural product-derived, macrocyclic ligands for a G protein coupled receptor (GPCR) is noteworthy.


Subject(s)
Receptors, Calcitonin Gene-Related Peptide , Receptors, G-Protein-Coupled , Calcitonin Receptor-Like Protein/chemistry , Calcitonin Receptor-Like Protein/metabolism , Crystallography, X-Ray , Ligands , Receptors, Calcitonin Gene-Related Peptide/chemistry , Receptors, Calcitonin Gene-Related Peptide/metabolism , Receptors, G-Protein-Coupled/metabolism
4.
J Thromb Haemost ; 19(7): 1776-1782, 2021 07.
Article in English | MEDLINE | ID: mdl-33774918

ABSTRACT

BACKGROUND: Arterial and venous thrombosis are both common in antiphospholipid syndrome (APS). Recent studies have shown that anti-factor Xa (FXa) therapy in APS patients leads to a greater number of patients with arterial thrombosis than with warfarin. We hypothesize that this may be due to the lowering of prothrombin levels by warfarin. OBJECTIVES: To investigate whether antiprothrombin antibodies induce platelet aggregation and to identify the platelet receptors involved. A second aim was to investigate the effect of reduced prothrombin levels on antiprothrombin antibody-induced platelet aggregation. METHODS: Enzyme-linked immunosorbent assays were performed to measure binding of antiprothrombin antibodies to prothrombin fragment 1+2 and prothrombin. Platelet aggregation assays in washed platelets were performed. FcγRIIA was immunoprecipitated and tyrosine-phosphorylated FcγRIIA was measured by western blot. RESULTS: The antiprothrombin antibodies 28F4 and 3B1 had lupus anticoagulant (LAC) activity and caused platelet aggregation in the presence of Ca2+ and prothrombin. Antiprothrombin antibodies without LAC activity did not activate platelets. Inhibition of Syk and Src kinases and FcγRIIA blocked platelet aggregation. Fab and F(ab')2 fragments of 28F4 were unable to induce platelet aggregation. Immunoprecipitations showed that whole 28F4 immunoglobulin G induced tyrosine phosphorylation of FcγRIIA. Platelet aggregation was significantly reduced when prothrombin levels were reduced from 1 µM to 0.2 µM. CONCLUSIONS: Antiprothrombin antibodies with LAC activity are able to activate platelets via FcγRIIA. Decreased prothrombin levels resulted in less antiprothrombin antibody-mediated platelet aggregation. This may explain the lower incidence of arterial thrombosis in patients treated with warfarin than with anti-FXa therapy.


Subject(s)
Antiphospholipid Syndrome , Thrombosis , Antiphospholipid Syndrome/drug therapy , Humans , Immunoglobulin G , Lupus Coagulation Inhibitor , Platelet Activation , Prothrombin , Thrombosis/drug therapy
5.
Platelets ; 32(6): 779-785, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-33356751

ABSTRACT

Platelet Endothelial Aggregation Receptor 1 (PEAR1) is an orphan receptor of unknown function which mediates powerful activation of platelets and endothelial cells in response to crosslinking by antibodies and sulfated polysaccharides belonging to the dextran and fucoidan families. PEAR1 is a single transmembrane protein composed of 15 epidermal growth factor-like repeat sequences and with a conserved binding motif, YXXM, which when phosphorylated binds to phosphoinositide 3-kinase (PI3K). The 13th of the repeats has a heparin-binding sequence that is the site of interaction with the sulfated fucoidans and the only known endogenous ligand FcεRIα. Crosslinking of PEAR1 drives Src family kinase phosphorylation of the cytosolic tail leading to binding and activation of PI3K. In this Opinion Article, we summarize the literature on PEAR1 expression, structure and signaling, and the search for further endogenous ligands. We highlight one article in which phosphorylation of a 150 kDa platelet protein by heparin-containing ligands has been reported and propose that PEAR1 is a receptor for one or more glycosaminoglycan-conjugated proteins (proteoglycans). The up-regulation of PEAR1 at sites of inflammation in the vasculature and its role in angiogenesis suggests a role in the interplay of inflammation, platelets, coagulation, and thromboinflammation. We speculate that this may explain the link between single nucleotide variants in PEAR1 and cardiovascular disease.


Subject(s)
Proteoglycans/metabolism , Receptors, Cell Surface/metabolism , Animals , Cell Communication , Humans , Ligands , Mice , Signal Transduction
6.
Platelets ; 32(8): 1051-1062, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-32981398

ABSTRACT

An organized and dynamic cytoskeleton is required for platelet formation and function. Formins are a large family of actin regulatory proteins which are also able to regulate microtubule dynamics. There are four formin family members expressed in human and mouse megakaryocytes and platelets. We have previously shown that the actin polymerization activity of formin proteins is required for cytoskeletal dynamics and platelet spreading using a small molecule inhibitor. In the current study, we analyze transgenic mouse models deficient in two of these proteins, mDia1 and Fhod1, along with a model lacking both proteins. We demonstrate that double knockout mice display macrothrombocytopenia which is due to aberrant megakaryocyte function and a small decrease in platelet lifespan. Platelet function is unaffected by the loss of these proteins. This data indicates a critical role for formins in platelet and megakaryocyte function.


Subject(s)
Blood Platelets/metabolism , Fetal Proteins/metabolism , Formins/metabolism , Microtubules/metabolism , Platelet Function Tests/methods , Animals , Disease Models, Animal , Humans , Mice , Mice, Knockout
7.
Platelets ; 31(6): 801-811, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-31948362

ABSTRACT

Platelets are essential for normal hemostasis; however, pathological conditions can also trigger unwanted platelet activation precipitating thrombosis and ischemic damage of vital organs such as the heart or brain. Glycoprotein (GP)VI- and C-type lectin-like receptor 2 (CLEC-2)-mediated (hem)immunoreceptor tyrosine-based activation motif (ITAM) signaling represents a major pathway for platelet activation. The two members of the Growth-factor receptor-bound protein 2 (Grb2) family of adapter proteins expressed in platelets - Grb2 and Grb2-related adapter protein downstream of Shc (Gads) - are part of the hem(ITAM) signaling cascade by forming an adapter protein complex with linker for activation of T cells (LAT). To date, a possible functional redundancy between these two adapters in platelet activation has not been investigated. We here generated megakaryocyte- and platelet-specific Grb2/Gads double knockout (DKO) mice and analyzed their platelet function in vitro and in vivo. The DKO platelets exhibited virtually abolished (hem)ITAM signaling whereas only partial defects were seen in Grb2 or Gads single-deficient platelets. This was based on impaired phosphorylation of key molecules in the (hem)ITAM signaling cascade and translated into impaired hemostasis and partially defective arterial thrombosis, thereby exceeding the defects in either Grb2 KO or Gads KO mice. Despite this severe (hem)ITAM signaling defect, CLEC-2 dependent regulation of blood-lymphatic vessel separation was not affected in the DKO animals. These results provide direct evidence for critically redundant roles of Grb2 and Gads for platelet function in hemostasis and thrombosis, but not development.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , GRB2 Adaptor Protein/metabolism , Immunoreceptor Tyrosine-Based Activation Motif/genetics , Animals , Humans , Mice , Signal Transduction
9.
Nat Commun ; 8(1): 1786, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29176689

ABSTRACT

Thrombocytopenia is a major side effect of a new class of anticancer agents that target histone deacetylase (HDAC). Their mechanism is poorly understood. Here, we show that HDAC6 inhibition and genetic knockdown lead to a strong decrease in human proplatelet formation (PPF). Unexpectedly, HDAC6 inhibition-induced tubulin hyperacetylation has no effect on PPF. The PPF decrease induced by HDAC6 inhibition is related to cortactin (CTTN) hyperacetylation associated with actin disorganization inducing important changes in the distribution of megakaryocyte (MK) organelles. CTTN silencing in human MKs phenocopies HDAC6 inactivation and knockdown leads to a strong PPF defect. This is rescued by forced expression of a deacetylated CTTN mimetic. Unexpectedly, unlike human-derived MKs, HDAC6 and CTTN are shown to be dispensable for mouse PPF in vitro and platelet production in vivo. Our results highlight an unexpected function of HDAC6-CTTN axis as a positive regulator of human but not mouse MK maturation.


Subject(s)
Cortactin/metabolism , Histone Deacetylase 6/metabolism , Megakaryocytes/metabolism , Thrombocytopenia/metabolism , Acetylation/drug effects , Animals , Blood Platelets/cytology , Blood Platelets/metabolism , Cell Differentiation/genetics , Cells, Cultured , Cortactin/genetics , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/genetics , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Megakaryocytes/cytology , Mice, Knockout , Pyrimidines/pharmacology , RNA Interference , Thrombocytopenia/genetics
10.
Bioorg Med Chem Lett ; 27(18): 4500-4505, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28802631

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) has attracted considerable interest as a therapeutic target for the treatment of Parkinson's disease. Compounds derived from a 2-aminopyridine screening hit were optimised using a LRRK2 homology model based on mixed lineage kinase 1 (MLK1), such that a 2-aminopyridine-based lead molecule 45, with in vivo activity, was identified.


Subject(s)
Aminopyridines/pharmacology , Drug Design , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Aminopyridines/chemical synthesis , Aminopyridines/chemistry , Animals , Dogs , Dose-Response Relationship, Drug , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Madin Darby Canine Kidney Cells/drug effects , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Rats , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 27(11): 2629-2633, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28462834

ABSTRACT

Using fragment based and structure based drug discovery strategies a series of novel Sortilin inhibitors has been identified. The inhibitors are based on the N-substituted 1,2,3-triazol-4-one/ol heterocyclic template. X-ray crystallography shows that the 1,2,3-triazol-4-one/ol acts as a carboxylic acid isostere, making a bi-dentate interaction with an arginine residue of Sortilin, an interaction which has not been previously characterised for this heterocycle.


Subject(s)
Adaptor Proteins, Vesicular Transport/antagonists & inhibitors , Triazoles/chemistry , Adaptor Proteins, Vesicular Transport/metabolism , Binding Sites , Crystallography, X-Ray , Drug Design , Humans , Inhibitory Concentration 50 , Molecular Dynamics Simulation , Protein Structure, Tertiary , Structure-Activity Relationship , Triazoles/metabolism
12.
Platelets ; 28(4): 372-379, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27778524

ABSTRACT

A dynamic, properly organised actin cytoskeleton is critical for the production and haemostatic function of platelets. The Wiskott Aldrich Syndrome protein (WASp) and Actin-Related Proteins 2 & 3 Complex (Arp2/3 complex) are critical mediators of actin polymerisation and organisation in many cell types. In platelets and megakaryocytes, these proteins have been shown to be important for proper platelet production and function. The cortactin family of proteins (Cttn & HS1) are known to regulate WASp-Arp2/3-mediated actin polymerisation in other cell types and so here we address the role of these proteins in platelets using knockout mouse models. We generated mice lacking Cttn and HS1 in the megakaryocyte/platelet lineage. These mice had normal platelet production, with platelet number, size and surface receptor profile comparable to controls. Platelet function was also unaffected by loss of Cttn/HS1 with no differences observed in a range of platelet function assays including aggregation, secretion, spreading, clot retraction or tyrosine phosphorylation. No effect on tail bleeding time or in thrombosis models was observed. In addition, platelet actin nodules, and megakaryocyte podosomes, actin-based structures known to be dependent on WASp and the Arp2/3 complex, formed normally. We conclude that despite the importance of WASp and the Arp2/3 complex in regulating F-actin dynamics in many cells types, the role of cortactin in their regulation appears to be fulfilled by other proteins in platelets.


Subject(s)
Actins/metabolism , Blood Platelets/metabolism , Cortactin/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Megakaryocytes/metabolism , Podosomes/metabolism , Animals , Female , Humans , Male , Mice , Mice, Knockout , Protein Binding
13.
Platelets ; 26(6): 507-20, 2015.
Article in English | MEDLINE | ID: mdl-26196409

ABSTRACT

Besides their role in the formation of thrombus during haemostasis, it is becoming clear that platelets contribute to a number of other processes within the vasculature. Indeed, the integrated function of the thrombotic and inflammatory systems, which results in platelet-mediated recruitment of leukocytes, is now considered to be of great importance in the propagation, progression and pathogenesis of atherosclerotic disease of the arteries. There are three scenarios by which platelets can interact with leukocytes: (1) during haemostasis, when platelets adhere to and are activated on sub-endothelial matrix proteins exposed by vascular damage and then recruit leukocytes to a growing thrombus. (2) Platelets adhere to and are activated on stimulated endothelial cells and then bridge blood borne leukocytes to the vessel wall and. (3) Adhesion between platelets and leukocytes occurs in the blood leading to formation of heterotypic aggregates prior to contact with endothelial cells. In the following review we will not discuss leukocyte recruitment during haemostasis, as this represents a physiological response to tissue trauma that can progress, at least in its early stages, in the absence of inflammation. Rather we will deal with scenarios 2 and 3, as these pathways of platelet-leukocyte interactions are important during inflammation and in chronic inflammatory diseases such as atherosclerosis. Indeed, these interactions mean that leukocytes possess means of adhesion to the vessel wall under conditions that may not normally be permissive of leukocyte-endothelial cell adhesion, meaning that the disease process may be able to bypass the regulatory pathways which would ordinarily moderate the inflammatory response.


Subject(s)
Blood Platelets/metabolism , Chemotaxis, Leukocyte/immunology , Leukocytes/immunology , Leukocytes/metabolism , Vascular Diseases/immunology , Vascular Diseases/metabolism , Animals , Atherosclerosis/drug therapy , Atherosclerosis/immunology , Atherosclerosis/metabolism , Cell Adhesion , Cell Aggregation , Cell Communication , Cell-Derived Microparticles/metabolism , Endothelial Cells/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Leukocyte Rolling , Vascular Diseases/drug therapy
14.
Nat Commun ; 6: 7254, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26028144

ABSTRACT

The actin nodule is a novel F-actin structure present in platelets during early spreading. However, only limited detail is known regarding nodule organization and function. Here we use electron microscopy, SIM and dSTORM super-resolution, and live-cell TIRF microscopy to characterize the structural organization and signalling pathways associated with nodule formation. Nodules are composed of up to four actin-rich structures linked together by actin bundles. They are enriched in the adhesion-related proteins talin and vinculin, have a central core of tyrosine phosphorylated proteins and are depleted of integrins at the plasma membrane. Nodule formation is dependent on Wiskott-Aldrich syndrome protein (WASp) and the ARP2/3 complex. WASp(-/-) mouse blood displays impaired platelet aggregate formation at arteriolar shear rates. We propose actin nodules are platelet podosome-related structures required for platelet-platelet interaction and their absence contributes to the bleeding diathesis of Wiskott-Aldrich syndrome.


Subject(s)
Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Blood Platelets/metabolism , Platelet Aggregation/genetics , Wiskott-Aldrich Syndrome Protein/genetics , Wiskott-Aldrich Syndrome/genetics , Actin Cytoskeleton/ultrastructure , Actins/ultrastructure , Animals , Blood Platelets/ultrastructure , Humans , Mice , Mice, Knockout , Microscopy, Electron , Microscopy, Fluorescence , Optical Imaging , Podosomes/genetics , Podosomes/metabolism , Podosomes/ultrastructure , Talin/metabolism , Vinculin/metabolism , Wiskott-Aldrich Syndrome/blood , Wiskott-Aldrich Syndrome Protein/metabolism
15.
Chembiochem ; 16(11): 1680-8, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26062886

ABSTRACT

Lifeact is a 17-residue peptide that can be employed in cell microscopy as a probe for F-actin when fused to fluorescent proteins, but therefore is not suitable for all cell types. We have conjugated fluorescently labelled Lifeact to three different cell-penetrating systems (a myristoylated carrier (myr), the pH low insertion peptide (pHLIP) and the cationic peptide TAT) as a strategy to deliver Lifeact into cells and developed new tools for actin staining with improved synthetic accessibility and low toxicity, focusing on their suitability in platelets and megakaryocytes. Using confocal microscopy, we characterised the cell distribution of the new hybrids in fixed cells, and found that both myr- and pHLIP-Lifeact conjugates provide efficient actin staining upon cleavage of Lifeact from the carriers, without affecting cell spreading. This new approach could facilitate the design of new tools for actin visualisation.


Subject(s)
Actins/metabolism , Blood Platelets/metabolism , Cell-Penetrating Peptides/metabolism , Fluorescent Dyes/metabolism , Megakaryocytes/metabolism , Amino Acid Sequence , Cell-Penetrating Peptides/chemical synthesis , Cell-Penetrating Peptides/chemistry , Drug Design , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Hydrogen-Ion Concentration , Molecular Sequence Data , Staining and Labeling
16.
Bioorg Med Chem Lett ; 24(22): 5195-8, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25442311

ABSTRACT

The identification of the novel and selective GPR3 inverse agonist AF64394, the first small molecule inhibitor of GPR3 receptor function, is described. Structure activity relationships and syntheses based around AF64394 are reported.


Subject(s)
Drug Inverse Agonism , Pyrimidines/chemistry , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/physiology , Triazoles/chemistry , Animals , Mice , Pyrimidines/pharmacology , Triazoles/pharmacology
17.
Circ Res ; 114(7): 1204-19, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24677239

ABSTRACT

More than 130 years ago, it was recognized that platelets are key mediators of hemostasis. Nowadays, it is established that platelets participate in additional physiological processes and contribute to the genesis and progression of cardiovascular diseases. Recent data indicate that the platelet proteome, defined as the complete set of expressed proteins, comprises >5000 proteins and is highly similar between different healthy individuals. Owing to their anucleate nature, platelets have limited protein synthesis. By implication, in patients experiencing platelet disorders, platelet (dys)function is almost completely attributable to alterations in protein expression and dynamic differences in post-translational modifications. Modern platelet proteomics approaches can reveal (1) quantitative changes in the abundance of thousands of proteins, (2) post-translational modifications, (3) protein-protein interactions, and (4) protein localization, while requiring only small blood donations in the range of a few milliliters. Consequently, platelet proteomics will represent an invaluable tool for characterizing the fundamental processes that affect platelet homeostasis and thus determine the roles of platelets in health and disease. In this article we provide a critical overview on the achievements, the current possibilities, and the future perspectives of platelet proteomics to study patients experiencing cardiovascular, inflammatory, and bleeding disorders.


Subject(s)
Blood Platelets/metabolism , Blood Proteins/chemistry , Proteome/chemistry , Proteomics/methods , Animals , Blood Platelets/chemistry , Blood Proteins/genetics , Blood Proteins/metabolism , Humans , Proteome/genetics , Proteome/metabolism , Signal Transduction , Transcriptome
18.
Platelets ; 25(1): 1-7, 2014.
Article in English | MEDLINE | ID: mdl-23469931

ABSTRACT

Cyclic guanosine-3',5'-monophoshate (cGMP) is the common second messenger for the cardiovascular effects of nitric oxide (NO) and natriuretic peptides (NP; e.g. atrial NP [ANP]), which activate soluble and particulate guanylyl cyclases, respectively. The role of NO in regulating cGMP and platelet function is well documented, whereas there is little evidence supporting a role for NPs in regulating platelet reactivity. By studying platelet aggregation and secretion in response to a PAR-1 peptide, collagen and ADP, and phosphorylation of the cGMP-dependent protein kinase (PKG) substrate vasodilator-stimulated phosphoprotein (VASP) at serine 239, we evaluated the effects of NPs in the absence or presence of the non-selective cGMP and cAMP phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX). Our results show that NPs, possibly through the clearance receptor (natriuretic peptide receptor-C) expressed on platelet membranes, increase VASP phosphorylation but only following PDE inhibition, indicating a small, localised cGMP synthesis. As platelet aggregation and secretion measured under the same conditions were not affected, we conclude that the magnitude of PKG activation achieved by NPs in platelets per se is not sufficient to exert functional inhibition of platelet involvement in haemostasis.


Subject(s)
Blood Platelets/drug effects , Blood Platelets/metabolism , Cell Adhesion Molecules/blood , Microfilament Proteins/blood , Natriuretic Peptides/pharmacology , Phosphoproteins/blood , 1-Methyl-3-isobutylxanthine/pharmacology , Blood Platelets/enzymology , Cyclic GMP/biosynthesis , Cyclic GMP/blood , Cyclic GMP-Dependent Protein Kinases/blood , Humans , Natriuretic Peptides/blood , Peptide Fragments/blood , Peptide Fragments/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphorylation/drug effects , Platelet Aggregation/drug effects
19.
Bioorg Med Chem Lett ; 24(1): 177-80, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24355129

ABSTRACT

The identification of the novel, selective, orally bioavailable Sortilin inhibitor AF38469 is described. Structure-activity relationships and syntheses are reported, along with an X-ray crystal structure of the sortilin-AF38469 protein-inhibitor complex.


Subject(s)
Adaptor Proteins, Vesicular Transport/antagonists & inhibitors , Hydrocarbons, Fluorinated/pharmacology , Pyridines/pharmacology , Administration, Oral , Animals , Biological Availability , Crystallography, X-Ray , Dose-Response Relationship, Drug , High-Throughput Screening Assays , Hydrocarbons, Fluorinated/chemical synthesis , Hydrocarbons, Fluorinated/chemistry , Models, Molecular , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Rats , Structure-Activity Relationship
20.
Blood ; 121(18): 3727-32, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23446735

ABSTRACT

Laboratory testing for heparin-induced thrombocytopenia (HIT) has important shortcomings. Immunoassays fail to discriminate platelet-activating from nonpathogenic antibodies. Specific functional assays are impracticable due to the need for platelets and radioisotope. We describe 2 assays that may overcome these limitations. The KKO-inhibition test (KKO-I) measures the effect of plasma on binding of the HIT-like monoclonal antibody KKO to platelet factor 4 (PF4)/heparin. DT40-luciferase (DT40-luc) is a functional test comprised of a B-cell line expressing FcγRIIa coupled to a luciferase reporter. We compared these assays to polyspecific and immunoglobulin (Ig)G-specific PF4/heparin enzyme-linked immunosorbent assays (ELISAs) in samples from 58 patients with suspected HIT and circulating anti-PF4/heparin antibodies. HIT was defined as a 4Ts score ≥ 4 and positive (14)C-serotonin release assay. HIT-positive plasma demonstrated greater mean inhibition of KKO binding than HIT-negative plasma (78.9% vs 26.0%; P < .0001) and induced greater luciferase activity (3.14-fold basal vs 0.96-fold basal; P < .0001). The area under the receiver-operating characteristic curve was greater for KKO-I (0.93) than for the polyspecific (0.82; P = .020) and IgG-specific ELISA (0.76; P = .0044) and for DT40-luc (0.89) than for the IgG-specific ELISA (P = .046). KKO-I and DT40-luc showed better discrimination than 2 commercially available immunoassays, are simple to perform, and hold promise for improving the specificity and feasibility of HIT laboratory testing.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Heparin/adverse effects , Thrombocytopenia/chemically induced , Thrombocytopenia/diagnosis , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/immunology , Cells, Cultured , Female , Hematologic Tests , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...