Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Trop Med Hyg ; 109(5): 1036-1046, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37748764

ABSTRACT

Malaria remains the leading cause of acute febrile illness (AFI) in Africa despite successful control measures and programs. Acute febrile illnesses can be misdiagnosed as malaria as a result of the overlapping spectrum of nonspecific symptoms or may not be pursued because of limited diagnostic capabilities. This study investigated potential etiologies of AFIs in Ghana and determined the relationship between coinfection between malaria and Q fever, leptospirosis, and culturable bacteria in febrile patients. Participants were enrolled between July 2015 and December 2019 from four Ghanaian military treatment facilities. Of the 399 febrile participants, 222 (55.6%) males and 177 (44.6%) females were enrolled. Malaria was diagnosed in 275 (68.9%) participants. Malaria coinfection occurred with leptospirosis, Q fever, and blood-cultured bacteria in 11/206 (5.3%), 24/206 (11.7%), and 6/164 (3.7%) participants, respectively. Among the 124 malaria-negative samples, the positivity rates were 4.1% (3/74), 8.1% (6/74), and 3.6% (2/56) for leptospirosis, Q fever, and bacterial pathogens isolated from blood culture, respectively. The majority of documented clinical signs and symptoms were not significantly associated with specific diseases. Approximately 10% of malaria-positive participants also had evidence suggesting the presence of a bacterial coinfection. Therefore, even in the case of a positive malaria test, other pathogens contributing to febrile illness should be considered. Understanding the frequency of malaria coinfection and other etiological agents responsible for AFIs will improve diagnosis and treatment and better inform public health knowledge gaps in Ghana.


Subject(s)
Coinfection , Leptospirosis , Malaria , Q Fever , Male , Female , Humans , Coinfection/epidemiology , Coinfection/complications , Ghana/epidemiology , Q Fever/complications , Malaria/complications , Malaria/epidemiology , Malaria/diagnosis , Fever/etiology , Leptospirosis/complications , Leptospirosis/epidemiology , Leptospirosis/diagnosis , Bacteria
2.
Front Microbiol ; 14: 1163450, 2023.
Article in English | MEDLINE | ID: mdl-37455743

ABSTRACT

Introduction: Gonorrhoea is a major public health concern. With the global emergence and spread of resistance to last-line antibiotic treatment options, gonorrhoea threatens to be untreatable in the future. Therefore, this study performed whole genome characterization of Neisseria gonorrhoeae collected in Ghana to identify lineages of circulating strains as well as their phenotypic and genotypic antimicrobial resistance (AMR) profiles. Methods: Whole genome sequencing (WGS) was performed on 56 isolates using both the Oxford Nanopore MinION and Illumina MiSeq sequencing platforms. The Comprehensive Antimicrobial Resistance Database (CARD) and PUBMLST.org/neisseria databases were used to catalogue chromosomal and plasmid genes implicated in AMR. The core genome multi-locus sequence typing (cgMLST) approach was used for comparative genomics analysis. Results and Discussion: In vitro resistance measured by the E-test method revealed 100%, 91.0% and 85.7% resistance to tetracycline, penicillin and ciprofloxacin, respectively. A total of 22 sequence types (STs) were identified by multilocus sequence typing (MLST), with ST-14422 (n = 10), ST-1927 (n = 8) and ST-11210 (n = 7) being the most prevalent. Six novel STs were also identified (ST-15634, 15636-15639 and 15641). All isolates harboured chromosomal AMR determinants that confer resistance to beta-lactam antimicrobials and tetracycline. A single cefixime-resistant strain, that belongs to N. gonorrhoeae multiantigen sequence type (NG-MAST) ST1407, a type associated with widespread cephalosporin resistance was identified. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR), identified 29 unique sequence types, with ST-464 (n = 8) and the novel ST-3366 (n = 8) being the most prevalent. Notably, 20 of the 29 STs were novel, indicative of the unique nature of molecular AMR determinants in the Ghanaian strains. Plasmids were highly prevalent: pTetM and pblaTEM were found in 96% and 92% of isolates, respectively. The TEM-135 allele, which is an amino acid change away from producing a stable extended-spectrum ß-lactamase that could result in complete cephalosporin resistance, was identified in 28.5% of the isolates. Using WGS, we characterized N. gonorrhoeae strains from Ghana, giving a snapshot of the current state of gonococcal AMR in the country and highlighting the need for constant genomic surveillance.

3.
PLoS One ; 17(9): e0271321, 2022.
Article in English | MEDLINE | ID: mdl-36149889

ABSTRACT

Recent reports of haemagglutinin antigen (HA) mismatch between vaccine composition strains and circulating strains, have led to renewed interest in influenza B viruses. Additionally, there are concerns about resistance to neuraminidase inhibitors in new influenza B isolates. To assess the potential impact in Ghana, we characterized the lineages of influenza B viruses that circulated in Ghana between 2016 and 2017 from different regions of the country: Southern, Northern and Central Ghana. Eight representative specimens from the three regions that were positive for influenza B virus by real-time RT-PCR were sequenced and compared to reference genomes from each lineage. A total of eleven amino acids substitutions were detected in the B/Victoria lineage and six in the B/Yamagata lineage. The strains of influenza B viruses were closely related to influenza B/Brisbane/60/2008 and influenza B/Phuket/3073/2013 for the Victoria and Yamagata lineages, respectively. Three main amino acid substitutions (P31S, I117V and R151K) were found in B/Victoria lineages circulating between 2016 and 2017, while one strain of B/Victoria possessed a unique glycosylation site at amino acid position 51 in the HA2 subunit. Two main substitutions (L172Q and M251V) were detected in the HA gene of the B/Yamagata lineage. The U.S. CDC recently reported a deletion sub-group in influenza B virus, but this was not identified among the Ghanaian specimens. Close monitoring of the patterns of influenza B evolution is necessary for the efficient selection of representative viruses for the design and formulation of effective influenza vaccines.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza B virus , Influenza, Human , Amino Acids/genetics , Ghana/epidemiology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza B virus/genetics , Influenza, Human/virology , Neuraminidase/genetics , Phylogeny
4.
Viruses ; 14(9)2022 08 30.
Article in English | MEDLINE | ID: mdl-36146724

ABSTRACT

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the disparity between developed and developing countries for infectious disease surveillance and the sequencing of pathogen genomes. The majority of SARS-CoV-2 sequences published are from Europe, North America, and Asia. Between April 2020 and January 2022, 795 SARS-CoV-2-positive nares swabs from individuals in the U.S. Navy installation Camp Lemonnier, Djibouti, were collected, sequenced, and analyzed. In this study, we described the results of genomic sequencing and analysis for 589 samples, the first published viral sequences for Djibouti, including 196 cases of vaccine breakthrough infections. This study contributes to the knowledge base of circulating SARS-CoV-2 lineages in the under-sampled country of Djibouti, where only 716 total genome sequences are available at time of publication. Our analysis resulted in the detection of circulating variants of concern, mutations of interest in lineages in which those mutations are not common, and emerging spike mutations.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Djibouti/epidemiology , Genome, Viral , Humans , Mutation , SARS-CoV-2/genetics
5.
Parasit Vectors ; 15(1): 86, 2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35279200

ABSTRACT

BACKGROUND: Ticks are important vectors of various pathogenic protozoa, bacteria and viruses that cause serious and life-threatening illnesses in humans and animals worldwide. Estimating tick-borne pathogen prevalence in tick populations is necessary to delineate how geographical differences, environmental variability and host factors influence pathogen prevalence and transmission. This study identified ticks and tick-borne pathogens in samples collected from June 2016 to December 2017 at seven sites within the Coastal, Sudan and Guinea savanna ecological zones of Ghana. METHODS: A total of 2016 ticks were collected from domestic animals including cattle, goats and dogs. Ticks were morphologically identified and analysed for pathogens such as Crimean-Congo haemorrhagic fever virus (CCHFV), Alkhurma haemorrhagic fever virus (AHFV), Rickettsia spp. and Coxiella burnetii using polymerase chain reaction assays (PCR) and sequence analysis. RESULTS: Seven species were identified, with Amblyomma variegatum (60%) most frequently found, followed by Rhipicephalus sanguineus sensu lato (21%), Rhipicephalus spp. (9%), Hyalomma truncatum (6%), Hyalomma rufipes (3%), Rhipicephalus evertsi (1%) and Rhipicephalus (Boophilus) sp. (0.1%). Out of 912 pools of ticks tested, Rickettsia spp. and Coxiella burnetii DNA was found in 45.6% and 16.7% of pools, respectively, whereas no CCHFV or AHFV RNA were detected. Co-infection of bacterial DNA was identified in 9.6% of tick pools, with no statistical difference among the ecozones studied. CONCLUSIONS: Based on these data, humans and animals in these ecological zones are likely at the highest risk of exposure to rickettsiosis, since ticks infected with Rickettsia spp. displayed the highest rates of infection and co-infection with C. burnetii, compared to other tick-borne pathogens in Ghana.


Subject(s)
Rhipicephalus , Rickettsia , Animals , Animals, Domestic , Cattle , Dogs , Ghana/epidemiology , Prevalence , Rickettsia/genetics
6.
Front Epidemiol ; 2: 1011938, 2022.
Article in English | MEDLINE | ID: mdl-38455301

ABSTRACT

Rapid diagnostic tests (RDTs) are used to diagnose malaria in Ghana and other malaria endemic countries. Plasmodium falciparum histidine-rich protein 2 (PFHRP2) based RDTs are widely used, however the occurrence of deletions of the pfhrp2 gene in some parasites have resulted in false negative test results. Monoclonal antibodies of PFHRP2 cross reacts with PFHRP3 because they share structural similarities and this complements the detection of the parasites by RDT. These two genes were investigated in Ghanaian P. falciparum parasite population to detect deletions and the polymorphisms in exon 2 of the pfhrp2 and pfhrp3 genes. Parasite isolates (2,540) from children ≤ 12 years with uncomplicated malaria from 2015 to 2020 transmission seasons were used. Both genes were amplified using nested PCR and negative results indicated the presence of the deletion of genes. Amplified genes were sequenced for the detection of the amino acid repeats. Deletions were observed in 30.7% (780/2,540) and 17.2% (438/2,540) of the samples for pfhrp2 and pfhrp3 respectively with increasing trends over the three time periods (χ2 -10.305, p = 0.001). A total of 1,632 amplicons were sequenced for each gene, analysis was done on 1,124 and 1,307 good quality sequences for pfhrp2 and pfhrp3 respectively. Pfhrp2 repeat polymorphisms were dominantly of types 2 (AHHAHHAAD) and 7 (AHHAAD) with large numbers of variants. A novel variant of type 14 (AHHANHATD) was seen for pfhrp2. For the pfhrp3 repeat types, 16 (AHHAAN), 17 (AHHDG) and 18 (AHHDD) were the dominant types observed. Variants of type 16 (AHHAAH) and (AHHASH) were also dominant. Repeat types 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 15, 16, and 19 were observed be shared by both genes. The haplotype diversity of both genes ranged between 0.872 and 1 indicating high diversity of the polymorphisms in the isolates. The implication of the findings of the frequencies of the pfhrp2 and pfhrp3 deletions as well as the variants of the main epitopes of the monoclonal antibodies for the RDT (types 2 and 7) in our isolates is an indication of decreased sensitivity of the RDTs in diagnosing malaria infections in Ghana.

SELECTION OF CITATIONS
SEARCH DETAIL
...