Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; 22(10): 100629, 2023 10.
Article in English | MEDLINE | ID: mdl-37557955

ABSTRACT

Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.


Subject(s)
Alzheimer Disease , Humans , Brain , Biomarkers , Neurons , Precision Medicine , Amyloid beta-Peptides
2.
J Proteome Res ; 22(9): 3068-3080, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37606934

ABSTRACT

Cerebrospinal fluid (CSF) is an essential matrix for the discovery of neurological disease biomarkers. However, the high dynamic range of protein concentrations in CSF hinders the detection of the least abundant protein biomarkers by untargeted mass spectrometry. It is thus beneficial to gain a deeper understanding of the secretion processes within the brain. Here, we aim to explore if and how the secretion of brain proteins to the CSF can be predicted. By combining a curated CSF proteome and the brain elevated proteome of the Human Protein Atlas, brain proteins were classified as CSF or non-CSF secreted. A machine learning model was trained on a range of sequence-based features to differentiate between CSF and non-CSF groups and effectively predict the brain origin of proteins. The classification model achieves an area under the curve of 0.89 if using high confidence CSF proteins. The most important prediction features include the subcellular localization, signal peptides, and transmembrane regions. The classifier generalized well to the larger brain detected proteome and is able to correctly predict novel CSF proteins identified by affinity proteomics. In addition to elucidating the underlying mechanisms of protein secretion, the trained classification model can support biomarker candidate selection.


Subject(s)
Biomedical Research , Proteome , Humans , Brain , Protein Transport , Biological Transport , Cerebrospinal Fluid Proteins
3.
PLoS Comput Biol ; 18(12): e1010669, 2022 12.
Article in English | MEDLINE | ID: mdl-36454728

ABSTRACT

The ubiquitous availability of genome sequencing data explains the popularity of machine learning-based methods for the prediction of protein properties from their amino acid sequences. Over the years, while revising our own work, reading submitted manuscripts as well as published papers, we have noticed several recurring issues, which make some reported findings hard to understand and replicate. We suspect this may be due to biologists being unfamiliar with machine learning methodology, or conversely, machine learning experts may miss some of the knowledge needed to correctly apply their methods to proteins. Here, we aim to bridge this gap for developers of such methods. The most striking issues are linked to a lack of clarity: how were annotations of interest obtained; which benchmark metrics were used; how are positives and negatives defined. Others relate to a lack of rigor: If you sneak in structural information, your method is not sequence-based; if you compare your own model to "state-of-the-art," take the best methods; if you want to conclude that some method is better than another, obtain a significance estimate to support this claim. These, and other issues, we will cover in detail. These points may have seemed obvious to the authors during writing; however, they are not always clear-cut to the readers. We also expect many of these tips to hold for other machine learning-based applications in biology. Therefore, many computational biologists who develop methods in this particular subject will benefit from a concise overview of what to avoid and what to do instead.


Subject(s)
Benchmarking , Machine Learning , Amino Acid Sequence , Chromosome Mapping , Knowledge
4.
Biomark Res ; 10(1): 83, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36380380

ABSTRACT

Fluid protein biomarkers are important tools in clinical research and health care to support diagnosis and to monitor patients. Especially within the field of dementia, novel biomarkers could address the current challenges of providing an early diagnosis and of selecting trial participants. While the great potential of fluid biomarkers is recognized, their implementation in routine clinical use has been slow. One major obstacle is the often unsuccessful translation of biomarker candidates from explorative high-throughput techniques to sensitive antibody-based immunoassays. In this review, we propose the incorporation of bioinformatics into the workflow of novel immunoassay development to overcome this bottleneck and thus facilitate the development of novel biomarkers towards clinical laboratory practice. Due to the rapid progress within the field of bioinformatics many freely available and easy-to-use tools and data resources exist which can aid the researcher at various stages. Current prediction methods and databases can support the selection of suitable biomarker candidates, as well as the choice of appropriate commercial affinity reagents. Additionally, we examine methods that can determine or predict the epitope - an antibody's binding region on its antigen - and can help to make an informed choice on the immunogenic peptide used for novel antibody production. Selected use cases for biomarker candidates help illustrate the application and interpretation of the introduced tools.

5.
Front Neurol ; 13: 890638, 2022.
Article in English | MEDLINE | ID: mdl-35903119

ABSTRACT

Proteomics studies have shown differential expression of numerous proteins in dementias but have rarely led to novel biomarker tests for clinical use. The Marie Curie MIRIADE project is designed to experimentally evaluate development strategies to accelerate the validation and ultimate implementation of novel biomarkers in clinical practice, using proteomics-based biomarker development for main dementias as experimental case studies. We address several knowledge gaps that have been identified in the field. First, there is the technology-translation gap of different technologies for the discovery (e.g., mass spectrometry) and the large-scale validation (e.g., immunoassays) of biomarkers. In addition, there is a limited understanding of conformational states of biomarker proteins in different matrices, which affect the selection of reagents for assay development. In this review, we aim to understand the decisions taken in the initial steps of biomarker development, which is done via an interim narrative update of the work of each ESR subproject. The results describe the decision process to shortlist biomarkers from a proteomics to develop immunoassays or mass spectrometry assays for Alzheimer's disease, Lewy body dementia, and frontotemporal dementia. In addition, we explain the approach to prepare the market implementation of novel biomarkers and assays. Moreover, we describe the development of computational protein state and interaction prediction models to support biomarker development, such as the prediction of epitopes. Lastly, we reflect upon activities involved in the biomarker development process to deduce a best-practice roadmap for biomarker development.

6.
Bioinformatics ; 37(20): 3421-3427, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-33974039

ABSTRACT

MOTIVATION: Antibodies play an important role in clinical research and biotechnology, with their specificity determined by the interaction with the antigen's epitope region, as a special type of protein-protein interaction (PPI) interface. The ubiquitous availability of sequence data, allows us to predict epitopes from sequence in order to focus time-consuming wet-lab experiments toward the most promising epitope regions. Here, we extend our previously developed sequence-based predictors for homodimer and heterodimer PPI interfaces to predict epitope residues that have the potential to bind an antibody. RESULTS: We collected and curated a high quality epitope dataset from the SAbDab database. Our generic PPI heterodimer predictor obtained an AUC-ROC of 0.666 when evaluated on the epitope test set. We then trained a random forest model specifically on the epitope dataset, reaching AUC 0.694. Further training on the combined heterodimer and epitope datasets, improves our final predictor to AUC 0.703 on the epitope test set. This is better than the best state-of-the-art sequence-based epitope predictor BepiPred-2.0. On one solved antibody-antigen structure of the COVID19 virus spike receptor binding domain, our predictor reaches AUC 0.778. We added the SeRenDIP-CE Conformational Epitope predictors to our webserver, which is simple to use and only requires a single antigen sequence as input, which will help make the method immediately applicable in a wide range of biomedical and biomolecular research. AVAILABILITY AND IMPLEMENTATION: Webserver, source code and datasets at www.ibi.vu.nl/programs/serendipwww/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

SELECTION OF CITATIONS
SEARCH DETAIL
...