Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764355

ABSTRACT

The photo-induced dynamics of o-nitrophenol, particularly its photolysis, has garnered significant scientific interest as a potential source of nitrous acid in the atmosphere. Although the photolysis products and preceding photo-induced electronic structure dynamics have been investigated extensively, the nuclear dynamics accompanying the non-radiative relaxation of o-nitrophenol on the ultrafast timescale, which include an intramolecular proton transfer step, have not been experimentally resolved. Herein, we present a direct observation of the ultrafast nuclear motions mediating photo-relaxation using ultrafast electron diffraction. This work spatiotemporally resolves the loss of planarity which enables access to a conical intersection between the first excited state and the ground state after the proton transfer step, on the femtosecond timescale and with sub-Angstrom resolution. Our observations, supported by ab initio multiple spawning simulations, provide new insights into the proton transfer mediated relaxation mechanism in o-nitrophenol.

2.
Science ; 374(6563): 92-95, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34591617

ABSTRACT

The radiolysis of water is ubiquitous in nature and plays a critical role in numerous biochemical and technological applications. Although the elementary reaction pathways for ionized water have been studied, the short-lived intermediate complex and structural dynamic response after the proton transfer reaction remain poorly understood. Using a liquid-phase ultrafast electron diffraction technique to measure the intermolecular oxygen···oxygen and oxygen···hydrogen bonds, we captured the short-lived radical-cation complex OH(H3O+) that was formed within 140 femtoseconds through a direct oxygen···oxygen bond contraction and proton transfer, followed by the radical-cation pair dissociation and the subsequent structural relaxation of water within 250 femtoseconds. These measurements provide direct evidence of capturing this metastable radical-cation complex before separation, thereby improving our fundamental understanding of elementary reaction dynamics in ionized liquid water.

3.
Ultramicroscopy ; 223: 113211, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33582644

ABSTRACT

Electron diffraction through a thin patterned silicon membrane can be used to create complex spatial modulations in electron distributions. By precisely varying parameters such as crystallographic orientation and wafer thickness, the intensity of reflections in the diffraction plane can be controlled and by placing an aperture to block all but one spot, we can form an image with different parts of the patterned membrane, as is done for bright-field imaging in microscopy. The patterned electron beams can then be used to control phase and amplitude of subsequent x-ray emission, enabling novel coherent x-ray methods. The electrons themselves can also be used for femtosecond time resolved diffraction and microscopy. As a first step toward patterned beams, we demonstrate experimentally and through simulation the ability to accurately predict and control diffraction spot intensities. We simulate MeV transmission electron diffraction patterns using the multislice method for various crystallographic orientations of a single crystal Si(001) membrane near beam normal. The resulting intensity maps of the Bragg reflections are compared to experimental results obtained at the Accelerator Structure Test Area Ultrafast Electron Diffraction (ASTA UED) facility at SLAC. Furthermore, the fraction of inelastic and elastic scattering of the initial charge is estimated along with the absorption of the membrane to determine the contrast that would be seen in a patterned version of the Si(001) membrane.

4.
Struct Dyn ; 7(2): 024301, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32161776

ABSTRACT

The conversion of light into usable chemical and mechanical energy is pivotal to several biological and chemical processes, many of which occur in solution. To understand the structure-function relationships mediating these processes, a technique with high spatial and temporal resolutions is required. Here, we report on the design and commissioning of a liquid-phase mega-electron-volt (MeV) ultrafast electron diffraction instrument for the study of structural dynamics in solution. Limitations posed by the shallow penetration depth of electrons and the resulting information loss due to multiple scattering and the technical challenge of delivering liquids to vacuum were overcome through the use of MeV electrons and a gas-accelerated thin liquid sheet jet. To demonstrate the capabilities of this instrument, the structure of water and its network were resolved up to the 3 rd hydration shell with a spatial resolution of 0.6 Å; preliminary time-resolved experiments demonstrated a temporal resolution of 200 fs.

5.
Phys Rev Lett ; 124(5): 054801, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32083908

ABSTRACT

We present the first demonstration of THz driven bunch compression and timing stabilization of a relativistic electron beam. Quasi-single-cycle strong field THz radiation is used in a shorted parallel-plate structure to compress a few-fC beam with 2.5 MeV kinetic energy by a factor of 2.7, producing a 39 fs rms bunch length and a reduction in timing jitter by more than a factor of 2 to 31 fs rms. This THz driven technique offers a significant improvement to beam performance for applications like ultrafast electron diffraction, providing a critical step towards unprecedented timing resolution in ultrafast sciences, and other accelerator applications using femtosecond-scale electron beams.

6.
Struct Dyn ; 6(5): 054305, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31649964

ABSTRACT

The development of ultrafast gas electron diffraction with nonrelativistic electrons has enabled the determination of molecular structures with atomic spatial resolution. It has, however, been challenging to break the picosecond temporal resolution barrier and achieve the goal that has long been envisioned-making space- and-time resolved molecular movies of chemical reaction in the gas-phase. Recently, an ultrafast electron diffraction (UED) apparatus using mega-electron-volt (MeV) electrons was developed at the SLAC National Accelerator Laboratory for imaging ultrafast structural dynamics of molecules in the gas phase. The SLAC gas-phase MeV UED has achieved 65 fs root mean square temporal resolution, 0.63 Å spatial resolution, and 0.22 Å-1 reciprocal-space resolution. Such high spatial-temporal resolution has enabled the capturing of real-time molecular movies of fundamental photochemical mechanisms, such as chemical bond breaking, ring opening, and a nuclear wave packet crossing a conical intersection. In this paper, the design that enables the high spatial-temporal resolution of the SLAC gas phase MeV UED is presented. The compact design of the differential pump section of the SLAC gas phase MeV UED realized five orders-of-magnitude vacuum isolation between the electron source and gas sample chamber. The spatial resolution, temporal resolution, and long-term stability of the apparatus are systematically characterized.

7.
Nat Chem ; 11(6): 504-509, 2019 06.
Article in English | MEDLINE | ID: mdl-30988415

ABSTRACT

The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Although the relaxation from the photoexcited electronic state during the ring-opening has been investigated in numerous studies, the accompanying changes in atomic distance have not been resolved. Here we present a direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and subångström length scale using megaelectronvolt ultrafast electron diffraction. We followed the carbon-carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by the direct measurement of time-dependent changes in the distribution of interatomic distances. We observed a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to a steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the subpicosecond timescale.

8.
Rev Sci Instrum ; 89(10): 10C108, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399817

ABSTRACT

Electron-lattice coupling strength governs the energy transfer between electrons and the lattice and is important for understanding the material behavior under highly non-equilibrium conditions. Here we report the results of employing time-resolved electron diffraction at MeV energies to directly study the electron-lattice coupling strength in 40-nm-thick polycrystalline copper excited by femtosecond optical lasers. The temporal evolution of lattice temperature at various pump fluence conditions were obtained from the measurements of the Debye-Waller decay of multiple diffraction peaks. We observed the temperature dependence of the electron-lattice relaxation time which is a result of the temperature dependence of electron heat capacity. Comparison with two-temperature model simulations reveals an electron-lattice coupling strength of (0.9 ± 0.1) × 1017 W/m3/K for copper.

9.
Ultramicroscopy ; 184(Pt A): 172-176, 2018 01.
Article in English | MEDLINE | ID: mdl-28915441

ABSTRACT

To understand and control the basic functions of physical, chemical and biological processes from micron to nano-meter scale, an instrument capable of visualizing transient structural changes of inhomogeneous materials with atomic spatial and temporal resolutions, is required. One such technique is femtosecond electron microdiffraction, in which a short electron pulse with femtosecond-scale duration is focused into a micron-scale spot and used to obtain diffraction images to resolve ultrafast structural dynamics over a localized crystalline domain. In this letter, we report the experimental demonstration of time-resolved mega-electron-volt electron microdiffraction which achieves a 5 µm root-mean-square (rms) beam size on the sample and a 110 fs rms temporal resolution. Using pulses of 10k electrons at 4.2 MeV energy with a normalized emittance 3 nm-rad, we obtained high quality diffraction from a single 10 µm paraffin (C44H90) crystal. The phonon softening mode in optical-pumped polycrystalline Bi was also time-resolved, demonstrating the temporal resolution limits of the instrument. This new characterization capability will open many research opportunities in material and biological sciences.

10.
Struct Dyn ; 4(5): 054501, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28795080

ABSTRACT

We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.

11.
Rev Sci Instrum ; 88(3): 033702, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372435

ABSTRACT

The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-µm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.

12.
Rev Sci Instrum ; 87(11): 11D810, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910490

ABSTRACT

We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined. This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.

13.
Rev Sci Instrum ; 86(7): 073702, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26233391

ABSTRACT

Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

14.
Phys Rev Lett ; 110(26): 264802, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23848882

ABSTRACT

The longitudinal space-charge amplifier has been recently proposed by Schneidmiller and Yurkov as an alternative to the free-electron laser instability for the generation of intense broadband radiation pulses [Phys. Rev. ST Accel. Beams 13, 110701 (2010)]. In this Letter, we report on the experimental demonstration of a cascaded longitudinal space-charge amplifier at optical wavelengths. Although seeded by electron beam shot noise, the strong compression of the electron beam along the three amplification stages leads to emission of coherent undulator radiation pulses exhibiting a single spectral spike and a single transverse mode. The on-axis gain is estimated to exceed 4 orders of magnitude with respect to spontaneous emission.

15.
Phys Rev Lett ; 110(9): 094802, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23496718

ABSTRACT

With the advent of coherent x rays provided by the x-ray free-electron laser (FEL), strong interest has been kindled in sophisticated diffraction imaging techniques. In this Letter, we exploit such techniques for the diagnosis of the density distribution of the intense electron beams typically utilized in an x-ray FEL itself. We have implemented this method by analyzing the far-field coherent transition radiation emitted by an inverse-FEL microbunched electron beam. This analysis utilizes an oversampling phase retrieval method on the transition radiation angular spectrum to reconstruct the transverse spatial distribution of the electron beam. This application of diffraction imaging represents a significant advance in electron beam physics, having critical applications to the diagnosis of high-brightness beams, as well as the collective microbunching instabilities afflicting these systems.

16.
Phys Rev Lett ; 110(24): 244801, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165931

ABSTRACT

We report on a proof-of-principle demonstration of a two-stage cascaded optical inverse free-electron laser (IFEL) accelerator in which an electron beam is accelerated by a strong laser pulse after being packed into optical microbunches by a weaker initial laser pulse. We show experimentally that injection of precisely prepared optical microbunches into an IFEL allows net acceleration or deceleration of the beam, depending on the relative phase of the two laser pulses. The experimental results are in excellent agreement with simulation. The demonstrated technique holds great promise to significantly improve the beam quality of IFELs and may have a strong impact on emerging laser accelerators driven by high-power optical lasers.


Subject(s)
Lasers , Particle Accelerators , Electrons
17.
Phys Rev Lett ; 109(7): 074801, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-23006375

ABSTRACT

We report generation of density modulation at terahertz (THz) frequencies in a relativistic electron beam through laser modulation of the beam longitudinal phase space. We show that by modulating the energy distribution of the beam with two lasers, density modulation at the difference frequency of the two lasers can be generated after the beam passes through a chicane. In this experiment, density modulation around 10 THz was generated by down-converting the frequencies of an 800 nm laser and a 1550 nm laser. The central frequency of the density modulation can be tuned by varying the laser wavelengths, beam energy chirp, or momentum compaction of the chicane. This technique can be applied to accelerator-based light sources for generation of coherent THz radiation and marks a significant advance toward tunable narrow band THz sources.

18.
Phys Rev Lett ; 108(2): 024802, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22324690

ABSTRACT

Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

19.
Phys Rev Lett ; 105(11): 114801, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20867575

ABSTRACT

We report the first experimental demonstration of the echo-enabled harmonic generation technique, which holds great promise for generation of high-power, fully coherent short-wavelength radiation. In this experiment, coherent radiation at the 3rd and 4th harmonics of the second seed laser is generated from the so-called beam echo effect. The experiment confirms the physics behind this technique and paves the way for applying the echo-enabled harmonic generation technique for seeded x-ray free electron lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...