Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 224(10): 1641-1648, 2021 11 22.
Article in English | MEDLINE | ID: mdl-33822064

ABSTRACT

BACKGROUND: Our laboratory previously examined the influence of environmental conditions on the stability of an early isolate of SARS-CoV-2 (hCoV-19/USA/WA-1/2020) in aerosols generated from culture medium or simulated saliva. However, genetic differences have emerged among SARS-CoV-2 lineages, and it is possible that these differences may affect environmental stability and the potential for aerosol transmission. METHODS: The influence of temperature, relative humidity, and simulated sunlight on the decay of 4 SARS-CoV-2 isolates in aerosols, including 1 belonging to the recently emerged B.1.1.7 lineage, were compared in a rotating drum chamber. Aerosols were generated from simulated respiratory tract lining fluid to represent aerosols originating from the deep lung. RESULTS: No differences in the stability of the isolates were observed in the absence of simulated sunlight at either 20°C or 40°C. However, a small but statistically significant difference in the stability was observed between some isolates in simulated sunlight at 20°C and 20% relative humidity. CONCLUSIONS: The stability of SARS-CoV-2 in aerosols does not vary greatly among currently circulating lineages, including B.1.1.7, suggesting that the increased transmissibility associated with recent SARS-CoV-2 lineages is not due to enhanced survival in the environment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Humidity , Respiratory Aerosols and Droplets
2.
Environ Chem Lett ; 19(2): 1773-1777, 2021.
Article in English | MEDLINE | ID: mdl-33551702

ABSTRACT

In the absence of a vaccine, preventing the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the primary means to reduce the impact of the 2019 coronavirus disease (COVID-19). Multiple studies have reported the presence of SARS-CoV-2 genetic material on surfaces suggesting that fomite transmission of SARS-CoV-2 is feasible. High temperature inactivation of virus has been previously suggested, but not shown. In the present study, we investigated the environmental stability of SARS-CoV-2 in a clinically relevant matrix dried onto stainless steel at a high temperature. The results show that at 54.5 °C, the virus half-life was 10.8 ± 3.0 min and the time for a 90% decrease in infectivity was 35.4 ± 9.0 min. These findings suggest that in instances where the environment can reach temperatures of at least 54.5 °C, such as in vehicle interior cabins when parked in warmer ambient air, that the potential for exposure to infectious virus on surfaces could be decreased substantially in under an hour.

3.
Aerosol Sci Technol ; 55(2): 142-153, 2021.
Article in English | MEDLINE | ID: mdl-38077296

ABSTRACT

Recent evidence suggests that respiratory aerosols may play a role in the spread of SARS-CoV-2 during the ongoing COVID-19 pandemic. Our laboratory has previously demonstrated that simulated sunlight inactivated SARS-CoV-2 in aerosols and on surfaces. In the present study, we extend these findings to include the persistence of SARS-CoV-2 in aerosols across a range of temperature, humidity, and simulated sunlight levels using an environmentally controlled rotating drum aerosol chamber. The results demonstrate that temperature, simulated sunlight, and humidity are all significant factors influencing the persistence of infectious SARS-CoV-2 in aerosols, but that simulated sunlight and temperature have a greater influence on decay than humidity across the range of conditions tested. The time needed for a 90% decrease in infectious virus ranged from 4.8 min at 40 °C, 20% relative humidity, and high intensity simulated sunlight representative of noon on a clear day on the summer solstice at 4°N latitude, to greater than two hours under conditions representative of those expected indoors or at night. These results suggest that the persistence of infectious SARS-CoV-2 in naturally occurring aerosols may be affected by environmental conditions, and that aerosolized virus could remain infectious for extended periods of time under some environmental conditions. The present study provides a comprehensive dataset on the influence of environmental parameters on the survival of SARS-CoV-2 in aerosols that can be utilized, along with data on viral shedding from infected individuals and the inhalational infectious dose, to inform future modeling and risk assessment efforts.

4.
mSphere ; 5(4)2020 07 01.
Article in English | MEDLINE | ID: mdl-32611701

ABSTRACT

Coronavirus disease 2019 (COVID-19) was first identified in China in late 2019 and is caused by newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous studies had reported the stability of SARS-CoV-2 in cell culture media and deposited onto surfaces under a limited set of environmental conditions. Here, we broadly investigated the effects of relative humidity, temperature, and droplet size on the stability of SARS-CoV-2 in a simulated clinically relevant matrix dried on nonporous surfaces. The results show that SARS-CoV-2 decayed more rapidly when either humidity or temperature was increased but that droplet volume (1 to 50 µl) and surface type (stainless steel, plastic, or nitrile glove) did not significantly impact decay rate. At room temperature (24°C), virus half-life ranged from 6.3 to 18.6 h depending on the relative humidity but was reduced to 1.0 to 8.9 h when the temperature was increased to 35°C. These findings suggest that a potential for fomite transmission may persist for hours to days in indoor environments and have implications for assessment of the risk posed by surface contamination in indoor environments.IMPORTANCE Mitigating the transmission of SARS-CoV-2 in clinical settings and public spaces is critically important to reduce the number of COVID-19 cases while effective vaccines and therapeutics are under development. SARS-CoV-2 transmission is thought to primarily occur through direct person-to-person transfer of infectious respiratory droplets or through aerosol-generating medical procedures. However, contact with contaminated surfaces may also play a significant role. In this context, understanding the factors contributing to SARS-CoV-2 persistence on surfaces will enable a more accurate estimation of the risk of contact transmission and inform mitigation strategies. To this end, we have developed a simple mathematical model that can be used to estimate virus decay on nonporous surfaces under a range of conditions and which may be utilized operationally to identify indoor environments in which the virus is most persistent.


Subject(s)
Fomites/virology , Humidity , Models, Theoretical , Severe acute respiratory syndrome-related coronavirus/physiology , Temperature , Virus Inactivation , Air Pollution, Indoor , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Coronavirus Infections/virology , Half-Life , Humans , Pandemics/prevention & control , Plastics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Porosity , Saliva/chemistry , Saliva/virology , Stainless Steel , Surface Properties
5.
J Infect Dis ; 222(4): 564-571, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32525979

ABSTRACT

Aerosols represent a potential transmission route of COVID-19. This study examined effect of simulated sunlight, relative humidity, and suspension matrix on stability of SARS-CoV-2 in aerosols. Simulated sunlight and matrix significantly affected decay rate of the virus. Relative humidity alone did not affect the decay rate; however, minor interactions between relative humidity and other factors were observed. Mean decay rates (± SD) in simulated saliva, under simulated sunlight levels representative of late winter/early fall and summer were 0.121 ±â€…0.017 min-1 (90% loss, 19 minutes) and 0.306 ±â€…0.097 min-1 (90% loss, 8 minutes), respectively. Mean decay rate without simulated sunlight across all relative humidity levels was 0.008 ±â€…0.011 min-1 (90% loss, 286 minutes). These results suggest that the potential for aerosol transmission of SARS-CoV-2 may be dependent on environmental conditions, particularly sunlight. These data may be useful to inform mitigation strategies to minimize the potential for aerosol transmission.


Subject(s)
Air Microbiology , Betacoronavirus/radiation effects , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Sunlight , Aerosols , Animals , COVID-19 , Chlorocebus aethiops , Computer Simulation , Culture Media , Humidity , Hydrogen-Ion Concentration , Pandemics , Regression Analysis , SARS-CoV-2 , Saliva/chemistry , Saliva/virology , Vero Cells
6.
Viruses ; 11(2)2019 02 16.
Article in English | MEDLINE | ID: mdl-30781518

ABSTRACT

Following the largest Ebola virus disease outbreak from 2013 to 2016, viral RNA has been detected in survivors from semen and breast milk long after disease recovery. However, as there have been few cases of sexual transmission, it is unclear whether every RNA positive fluid sample contains infectious virus. Virus isolation, typically using cell culture or animal models, can serve as a tool to determine the infectivity of patient samples. However, the sensitivity of these methods has not been assessed for the Ebola virus isolate, Makona. Described here is an efficiency comparison of Ebola virus Makona isolation using Vero E6, Huh-7, monocyte-derived macrophage cells, and suckling laboratory mice. Isolation sensitivity was similar in all methods tested. Laboratory mice and Huh-7 cells were less affected by toxicity from breast milk than Vero E6 and MDM cells. However, the advantages associated with isolation in Huh-7 cells over laboratory mice, including cost effectiveness, sample volume preservation, and a reduction in animal use, make Huh-7 cells the preferred substrate tested for Ebola virus Makona isolation.


Subject(s)
Ebolavirus/isolation & purification , Virology/methods , Animals , Animals, Suckling , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Hemorrhagic Fever, Ebola/virology , Humans , Macrophages/virology , Mice , Mice, Inbred BALB C , Milk, Human/virology , Semen/virology , Sensitivity and Specificity , Vero Cells
7.
J Virol ; 91(19)2017 10 01.
Article in English | MEDLINE | ID: mdl-28747493

ABSTRACT

Viral hemorrhagic septicemia virus (VHSV) is a pathogenic fish rhabdovirus found in discrete locales throughout the Northern Hemisphere. VHSV infection of fish cells leads to upregulation of the host's virus detection response, but the virus quickly suppresses interferon (IFN) production and antiviral gene expression. By systematically screening each of the six VHSV structural and nonstructural genes, we identified matrix protein (M) as the virus' most potent antihost protein. Only M of VHSV genotype IV sublineage b (VHSV-IVb) suppressed mitochondrial antiviral signaling protein (MAVS) and type I IFN-induced gene expression in a dose-dependent manner. M also suppressed the constitutively active simian virus 40 (SV40) promoter and globally decreased cellular RNA levels. Chromatin immunoprecipitation (ChIP) studies illustrated that M inhibited RNA polymerase II (RNAP II) recruitment to gene promoters and decreased RNAP II C-terminal domain (CTD) Ser2 phosphorylation during VHSV infection. However, transcription directed by RNAP I to III was suppressed by M. To identify regions of functional importance, M proteins from a variety of VHSV strains were tested in cell-based transcriptional inhibition assays. M of a particular VHSV-Ia strain, F1, was significantly less potent than IVb M at inhibiting SV40/luciferase (Luc) expression yet differed by just 4 amino acids. Mutation of D62 to alanine alone, or in combination with an E181-to-alanine mutation (D62A E181A), dramatically reduced the ability of IVb M to suppress host transcription. Introducing either M D62A or D62A E181A mutations into VHSV-IVb via reverse genetics resulted in viruses that replicated efficiently but exhibited less cytotoxicity and reduced antitranscriptional activities, implicating M as a primary regulator of cytopathicity and host transcriptional suppression.IMPORTANCE Viruses must suppress host antiviral responses to replicate and spread between hosts. In these studies, we identified the matrix protein of the deadly fish novirhabdovirus VHSV as a critical mediator of host suppression during infection. Our studies indicated that M alone could block cellular gene expression at very low expression levels. We identified several subtle mutations in M that were less potent at suppressing host transcription. When these mutations were engineered back into recombinant viruses, the resulting viruses replicated well but elicited less toxicity in infected cells and activated host innate immune responses more robustly. These data demonstrated that VHSV M plays an important role in mediating both virus-induced cell toxicity and viral replication. Our data suggest that its roles in these two processes can be separated to design effective attenuated viruses for vaccine candidates.


Subject(s)
Hemorrhagic Septicemia, Viral/pathology , Novirhabdovirus/growth & development , Novirhabdovirus/immunology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Virus Replication/genetics , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Animals , Cell Line , Chromatin Immunoprecipitation , Cyprinidae , Fish Diseases/virology , HEK293 Cells , Hemorrhagic Septicemia, Viral/virology , Humans , Immunity, Innate/immunology , Interferon Type I/immunology , Phosphorylation/genetics , Promoter Regions, Genetic/genetics , RNA/genetics , RNA Polymerase II/antagonists & inhibitors , Simian virus 40/genetics , Transcription, Genetic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...