Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nat Commun ; 15(1): 2243, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472200

ABSTRACT

Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased ß-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Angiogenesis , Brain/metabolism , Amyloid beta-Peptides/metabolism , Gene Expression Profiling
2.
Eur J Cell Biol ; 103(2): 151406, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38547677

ABSTRACT

Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.

3.
Cells ; 12(24)2023 12 18.
Article in English | MEDLINE | ID: mdl-38132179

ABSTRACT

Advances in stem cell technologies open up new avenues for modelling development and diseases. The success of these pursuits, however, relies on the use of cells most relevant to those targeted by the disease of interest, for example, midbrain dopaminergic neurons for Parkinson's disease. In the present study, we report the generation of a human induced pluripotent stem cell (iPSC) line capable of purifying and tracing nascent midbrain dopaminergic progenitors and their differentiated progeny via the expression of a Blue Fluorescent Protein (BFP). This was achieved by CRISPR/Cas9-assisted knock-in of BFP and Cre into the safe harbour locus AAVS1 and an early midbrain dopaminergic lineage marker gene LMX1A, respectively. Immunocytochemical analysis and single-cell RNA sequencing of iPSC-derived neural cultures confirm developmental recapitulation of the human fetal midbrain and high-quality midbrain cells. By modelling Parkinson's disease-related drug toxicity using 1-Methyl-4-phenylpyridinium (MPP+), we showed a preferential reduction of BFP+ cells, a finding demonstrated independently by cell death assays and single-cell transcriptomic analysis of MPP+ treated neural cultures. Together, these results highlight the importance of disease-relevant cell types in stem cell modelling.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Induced Pluripotent Stem Cells/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Gene Expression Profiling , Mesencephalon
4.
Cereb Circ Cogn Behav ; 5: 100189, 2023.
Article in English | MEDLINE | ID: mdl-37941765

ABSTRACT

Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder.

5.
Int J Mol Sci ; 24(9)2023 May 01.
Article in English | MEDLINE | ID: mdl-37175835

ABSTRACT

Inhibitory GABAergic interneurons originate in the embryonic medial ganglionic eminence (MGE) and control network activity in the neocortex. Dysfunction of these cells is believed to lead to runaway excitation underlying seizure-based neurological disorders such as epilepsy, autism, and schizophrenia. Despite their importance in heath and disease, our knowledge about the development of this diverse neuronal population remains incomplete. Here we conducted single-cell RNA sequencing (scRNA-seq) of human foetal MGE from 10 to 15 weeks post conception. These MGE tissues are composed of largely cycling progenitors and immature post-mitotic interneurons with characteristic regional marker expression. Analysis of integrated human and mouse MGE data revealed species-conserved transcriptomic profiles and regulatory programs. Moreover, we identified novel candidate transcription regulators for human interneuron differentiation. These findings provide a framework for in vitro modelling of interneuron development and a strategy for potentially enhancing interneuron production from human pluripotent stem cells.


Subject(s)
Neocortex , Transcriptome , Humans , Mice , Animals , Interneurons/metabolism , Cell Differentiation/genetics , GABAergic Neurons/metabolism
6.
Mol Neurobiol ; 60(4): 2150-2173, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36609826

ABSTRACT

Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K+ channel TMEM175. The study includes a detailed clinical and genetic analysis of 400 cases and 300 controls. Molecular studies were performed on patient-derived fibroblasts. The functional properties of the mutant channels were assessed by patch-clamp technique and co-immunoprecipitation. We have found that TMEM175 was highly expressed in dopaminergic neurons of the substantia nigra pars compacta and in microglia of the cerebral cortex of the human brain. Four common variants were associated with PD, including two novel variants rs2290402 (c.-10C > T) and rs80114247 (c.T1022C, p.M341T), located in the Kozak consensus sequence and TM3II domain, respectively. We also disclosed 13 novel highly penetrant detrimental mutations in the TMEM175 gene associated with PD. At least nine of these mutations (p.R35C, p. R183X, p.A270T, p.P308L, p.S348L, p. L405V, p.R414W, p.P427fs, p.R481W) may be sufficient to cause the disease, and the presence of mutations of other genes correlated with an earlier disease onset. In vitro functional analysis of the ion channel encoded by the mutated TMEM175 gene revealed a loss of the K+ conductance and a reduced channel affinity for Akt. Moreover, we observed an impaired autophagic/lysosomal proteolytic flux and an increase expression of unfolded protein response markers in patient-derived fibroblasts. These data suggest that mutations in TMEM175 gene may contribute to the pathophysiology of PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , Neurodegenerative Diseases/metabolism , Ion Channels/metabolism , Lysosomes/metabolism , Dopaminergic Neurons/metabolism , Potassium Channels/metabolism
7.
Biol Psychiatry ; 93(2): 157-166, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36150908

ABSTRACT

BACKGROUND: While a variety of evidence supports a prenatal component in schizophrenia, there are few data regarding the cell populations involved. We sought to identify cells of the human prenatal brain mediating genetic risk for schizophrenia by integrating cell-specific gene expression measures generated through single-nuclei RNA sequencing with recent large-scale genome-wide association study (GWAS) and exome sequencing data for the condition. METHODS: Single-nuclei RNA sequencing was performed on 5 brain regions (frontal cortex, ganglionic eminence, hippocampus, thalamus, and cerebellum) from 3 fetuses from the second trimester of gestation. Enrichment of schizophrenia common variant genetic liability and rare damaging coding variation was assessed in relation to gene expression specificity within each identified cell population. RESULTS: Common risk variants were prominently enriched within genes with high expression specificity for developing neuron populations within the frontal cortex, ganglionic eminence, and hippocampus. Enrichments were largely independent of genes expressed in neuronal populations of the adult brain that have been implicated in schizophrenia through the same methods. Genes containing an excess of rare damaging variants in schizophrenia had higher expression specificity for developing glutamatergic neurons of the frontal cortex and hippocampus that were also enriched for common variant liability. CONCLUSIONS: We found evidence for a distinct contribution of prenatal neuronal development to genetic risk for schizophrenia, involving specific populations of developing neurons within the second-trimester fetal brain. Our study significantly advances the understanding of the neurodevelopmental origins of schizophrenia and provides a resource with which to investigate the prenatal antecedents of other psychiatric and neurologic disorders.


Subject(s)
Schizophrenia , Adult , Pregnancy , Female , Humans , Schizophrenia/genetics , Schizophrenia/metabolism , Genome-Wide Association Study/methods , Exome Sequencing , Genetic Predisposition to Disease , Brain/metabolism , Neurons/metabolism , Sequence Analysis, RNA
8.
Genome Med ; 14(1): 129, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36384636

ABSTRACT

BACKGROUND: There is large individual variation in both clinical presentation and progression between Parkinson's disease patients. Generation of deeply and longitudinally phenotyped patient cohorts has enormous potential to identify disease subtypes for prognosis and therapeutic targeting. METHODS: Replicating across three large Parkinson's cohorts (Oxford Discovery cohort (n = 842)/Tracking UK Parkinson's study (n = 1807) and Parkinson's Progression Markers Initiative (n = 472)) with clinical observational measures collected longitudinally over 5-10 years, we developed a Bayesian multiple phenotypes mixed model incorporating genetic relationships between individuals able to explain many diverse clinical measurements as a smaller number of continuous underlying factors ("phenotypic axes"). RESULTS: When applied to disease severity at diagnosis, the most influential of three phenotypic axes "Axis 1" was characterised by severe non-tremor motor phenotype, anxiety and depression at diagnosis, accompanied by faster progression in cognitive function measures. Axis 1 was associated with increased genetic risk of Alzheimer's disease and reduced CSF Aß1-42 levels. As observed previously for Alzheimer's disease genetic risk, and in contrast to Parkinson's disease genetic risk, the loci influencing Axis 1 were associated with microglia-expressed genes implicating neuroinflammation. When applied to measures of disease progression for each individual, integration of Alzheimer's disease genetic loci haplotypes improved the accuracy of progression modelling, while integrating Parkinson's disease genetics did not. CONCLUSIONS: We identify universal axes of Parkinson's disease phenotypic variation which reveal that Parkinson's patients with high concomitant genetic risk for Alzheimer's disease are more likely to present with severe motor and non-motor features at baseline and progress more rapidly to early dementia.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , Parkinson Disease/genetics , Neuroinflammatory Diseases , Bayes Theorem , Cohort Studies
9.
Dis Model Mech ; 15(10)2022 10 01.
Article in English | MEDLINE | ID: mdl-36254682

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia, and risk-influencing genetics implicates microglia and neuroimmunity in the pathogenesis of AD. Induced pluripotent stem cell (iPSC)-derived microglia (iPSC-microglia) are increasingly used as a model of AD, but the relevance of historical immune stimuli to model AD is unclear. We performed a detailed cross-comparison over time on the effects of combinatory stimulation of iPSC-microglia, and in particular their relevance to AD. We used single-cell RNA sequencing to measure the transcriptional response of iPSC-microglia after 24 h and 48 h of stimulation with prostaglandin E2 (PGE2) or lipopolysaccharide (LPS)+interferon gamma (IFN-γ), either alone or in combination with ATPγS. We observed a shared core transcriptional response of iPSC-microglia to ATPγS and to LPS+IFN-γ, suggestive of a convergent mechanism of action. Across all conditions, we observed a significant overlap, although directional inconsistency to genes that change their expression levels in human microglia from AD patients. Using a data-led approach, we identify a common axis of transcriptomic change across AD genetic mouse models of microglia and show that only LPS provokes a transcriptional response along this axis in mouse microglia and LPS+IFN-γ in human iPSC-microglia. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Alzheimer Disease , Microglia , Alzheimer Disease/metabolism , Animals , Dinoprostone/metabolism , Disease Models, Animal , Humans , Interferon-gamma/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Mice , Microglia/pathology , Transcriptome/genetics
10.
JCI Insight ; 6(13)2021 07 08.
Article in English | MEDLINE | ID: mdl-34236053

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss of survival motor neuron (SMN) protein. While SMN restoration therapies are beneficial, they are not a cure. We aimed to identify potentially novel treatments to alleviate muscle pathology combining transcriptomics, proteomics, and perturbational data sets. This revealed potential drug candidates for repurposing in SMA. One of the candidates, harmine, was further investigated in cell and animal models, improving multiple disease phenotypes, including lifespan, weight, and key molecular networks in skeletal muscle. Our work highlights the potential of multiple and parallel data-driven approaches for the development of potentially novel treatments for use in combination with SMN restoration therapies.


Subject(s)
Harmine/pharmacology , Muscle, Skeletal , Muscular Atrophy, Spinal , Survival of Motor Neuron 1 Protein/metabolism , Animals , Cells, Cultured , Computational Biology , Disease Models, Animal , Drug Repositioning/methods , Gene Expression Profiling/methods , Humans , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Neuromuscular Agents/pharmacology , Proteomics/methods
11.
Genome Res ; 31(6): 1069-1081, 2021 06.
Article in English | MEDLINE | ID: mdl-34011578

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is a widely used method for identifying cell types and trajectories in biologically heterogeneous samples, but it is limited in its detection and quantification of lowly expressed genes. This results in missing important biological signals, such as the expression of key transcription factors (TFs) driving cellular differentiation. We show that targeted sequencing of ∼1000 TFs (scCapture-seq) in iPSC-derived neuronal cultures greatly improves the biological information garnered from scRNA-seq. Increased TF resolution enhanced cell type identification, developmental trajectories, and gene regulatory networks. This allowed us to resolve differences among neuronal populations, which were generated in two different laboratories using the same differentiation protocol. ScCapture-seq improved TF-gene regulatory network inference and thus identified divergent patterns of neurogenesis into either excitatory cortical neurons or inhibitory interneurons. Furthermore, scCapture-seq revealed a role for of retinoic acid signaling in the developmental divergence between these different neuronal populations. Our results show that TF targeting improves the characterization of human cellular models and allows identification of the essential differences between cellular populations, which would otherwise be missed in traditional scRNA-seq. scCapture-seq TF targeting represents a cost-effective enhancement of scRNA-seq, which could be broadly applied to improve scRNA-seq resolution.


Subject(s)
Induced Pluripotent Stem Cells , Single-Cell Analysis , Gene Expression Profiling/methods , Gene Regulatory Networks , Humans , Induced Pluripotent Stem Cells/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Alzheimers Res Ther ; 12(1): 151, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33198789

ABSTRACT

BACKGROUND: TREM2 is a microglial cell surface receptor, with risk mutations linked to Alzheimer's disease (AD), including R47H. TREM2 signalling via SYK aids phagocytosis, chemotaxis, survival, and changes to microglial activation state. In AD mouse models, knockout (KO) of TREM2 impairs microglial clustering around amyloid and prevents microglial activation. The R47H mutation is proposed to reduce TREM2 ligand binding. We investigated cell phenotypes of the R47H mutant and TREM2 KO in a model of human microglia, and compared their transcriptional signatures, to determine the mechanism by which R47H TREM2 disrupts function. METHODS: We generated human microglia-like iPSC-macrophages (pMac) from isogenic induced pluripotent stem cell (iPSC) lines, with homozygous R47H mutation or TREM2 knockout (KO). We firstly validated the effect of the R47H mutant on TREM2 surface and subcellular localization in pMac. To assess microglial phenotypic function, we measured phagocytosis of dead neurons, cell morphology, directed migration, survival, and LPS-induced inflammation. We performed bulk RNA-seq, comparing significant differentially expressed genes (DEGs; p < 0.05) between the R47H and KO versus WT, and bioinformatically predicted potential upstream regulators of TREM2-mediated gene expression. RESULTS: R47H modified surface expression and shedding of TREM2, but did not impair TREM2-mediated signalling, or gross phenotypes that were dysregulated in the TREM2 KO (phagocytosis, motility, survival). However, altered gene expression in the R47H TREM2 pMac overlapped by 90% with the TREM2 KO and was characterised by dysregulation of genes involved with immunity, proliferation, activation, chemotaxis, and adhesion. Downregulated mediators of ECM adhesion included the vitronectin receptor αVß3, and consequently, R47H TREM2 pMac adhered weakly to vitronectin compared with WT pMac. To counteract these transcriptional defects, we investigated TGFß1, as a candidate upstream regulator. TGFß1 failed to rescue vitronectin adhesion of pMac, although it improved αVß3 expression. CONCLUSIONS: The R47H mutation is not sufficient to cause gross phenotypic defects of human pMac under standard culture conditions. However, overlapping transcriptional defects with TREM2 KO supports the hypothesised partial loss-of-function effects of the R47H mutation. Furthermore, transcriptomics can guide us to more subtle phenotypic defects in the R47H cells, such as reduced cell adhesion, and can be used to predict targets for therapeutic intervention.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Alzheimer Disease/genetics , Brain , Humans , Macrophages , Membrane Glycoproteins/genetics , Microglia , Phenotype , Receptors, Immunologic/genetics
13.
Mov Disord ; 35(11): 2056-2067, 2020 11.
Article in English | MEDLINE | ID: mdl-32864809

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease with an often complex component identifiable by genome-wide association studies. The most recent large-scale PD genome-wide association studies have identified more than 90 independent risk variants for PD risk and progression across more than 80 genomic regions. One major challenge in current genomics is the identification of the causal gene(s) and variant(s) at each genome-wide association study locus. The objective of the current study was to create a tool that would display data for relevant PD risk loci and provide guidance with the prioritization of causal genes and potential mechanisms at each locus. METHODS: We included all significant genome-wide signals from multiple recent PD genome-wide association studies including themost recent PD risk genome-wide association study, age-at-onset genome-wide association study, progression genome-wide association study, and Asian population PD risk genome-wide association study. We gathered data for all genes 1 Mb up and downstream of each variant to allow users to assess which gene(s) are most associated with the variant of interest based on a set of self-ranked criteria. Multiple databases were queried for each gene to collect additional causal data. RESULTS: We created a PD genome-wide association study browser tool (https://pdgenetics.shinyapps.io/GWASBrowser/) to assist the PD research community with the prioritization of genes for follow-up functional studies to identify potential therapeutic targets. CONCLUSIONS: Our PD genome-wide association study browser tool provides users with a useful method of identifying potential causal genes at all known PD risk loci from large-scale PD genome-wide association studies. We plan to update this tool with new relevant data as sample sizes increase and new PD risk loci are discovered. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Age of Onset , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Parkinson Disease/genetics , Risk Factors
14.
Brain ; 143(9): 2771-2787, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32889528

ABSTRACT

Dystonia is a neurological disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures, often occurring in absence of any structural brain abnormality. Psychiatric comorbidities, including anxiety, depression, obsessive-compulsive disorder and schizophrenia, are frequent in patients with dystonia. While mutations in a fast-growing number of genes have been linked to Mendelian forms of dystonia, the cellular, anatomical, and molecular basis remains unknown for most genetic forms of dystonia, as does its genetic and biological relationship to neuropsychiatric disorders. Here we applied an unbiased systems-biology approach to explore the cellular specificity of all currently known dystonia-associated genes, predict their functional relationships, and test whether dystonia and neuropsychiatric disorders share a genetic relationship. To determine the cellular specificity of dystonia-associated genes in the brain, single-nuclear transcriptomic data derived from mouse brain was used together with expression-weighted cell-type enrichment. To identify functional relationships among dystonia-associated genes, we determined the enrichment of these genes in co-expression networks constructed from 10 human brain regions. Stratified linkage-disequilibrium score regression was used to test whether co-expression modules enriched for dystonia-associated genes significantly contribute to the heritability of anxiety, major depressive disorder, obsessive-compulsive disorder, schizophrenia, and Parkinson's disease. Dystonia-associated genes were significantly enriched in adult nigral dopaminergic neurons and striatal medium spiny neurons. Furthermore, 4 of 220 gene co-expression modules tested were significantly enriched for the dystonia-associated genes. The identified modules were derived from the substantia nigra, putamen, frontal cortex, and white matter, and were all significantly enriched for genes associated with synaptic function. Finally, we demonstrate significant enrichments of the heritability of major depressive disorder, obsessive-compulsive disorder and schizophrenia within the putamen and white matter modules, and a significant enrichment of the heritability of Parkinson's disease within the substantia nigra module. In conclusion, multiple dystonia-associated genes interact and contribute to pathogenesis likely through dysregulation of synaptic signalling in striatal medium spiny neurons, adult nigral dopaminergic neurons and frontal cortical neurons. Furthermore, the enrichment of the heritability of psychiatric disorders in the co-expression modules enriched for dystonia-associated genes indicates that psychiatric symptoms associated with dystonia are likely to be intrinsic to its pathophysiology.


Subject(s)
Dystonic Disorders/genetics , Gene Regulatory Networks/genetics , Mental Disorders/genetics , Neurons/physiology , Dystonic Disorders/diagnosis , Dystonic Disorders/epidemiology , Humans , Mental Disorders/diagnosis , Mental Disorders/epidemiology
15.
Nat Commun ; 11(1): 4183, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32826893

ABSTRACT

We describe a human single-nuclei transcriptomic atlas for the substantia nigra (SN), generated by sequencing approximately 17,000 nuclei from matched cortical and SN samples. We show that the common genetic risk for Parkinson's disease (PD) is associated with dopaminergic neuron (DaN)-specific gene expression, including mitochondrial functioning, protein folding and ubiquitination pathways. We identify a distinct cell type association between PD risk and oligodendrocyte-specific gene expression. Unlike Alzheimer's disease (AD), we find no association between PD risk and microglia or astrocytes, suggesting that neuroinflammation plays a less causal role in PD than AD. Beyond PD, we find associations between SN DaNs and GABAergic neuron gene expression and multiple neuropsychiatric disorders. Conditional analysis reveals that distinct neuropsychiatric disorders associate with distinct sets of neuron-specific genes but converge onto shared loci within oligodendrocytes and oligodendrocyte precursors. This atlas guides our aetiological understanding by associating SN cell type expression profiles with specific disease risk.


Subject(s)
Gene Expression , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Alzheimer Disease/metabolism , Astrocytes/metabolism , Brain , Dopaminergic Neurons/metabolism , Humans , Microglia/metabolism , Mitochondria/metabolism , Nervous System Diseases/pathology , Substantia Nigra/pathology , Transcriptome
16.
Stem Cell Reports ; 15(1): 38-51, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32502466

ABSTRACT

Astrocytes influence neuronal maturation and function by providing trophic support, regulating the extracellular environment, and modulating signaling at synapses. The emergence of induced pluripotent stem cell (iPSC) technology offers a human system with which to validate and re-evaluate insights from animal studies. Here, we set out to examine interactions between human astrocytes and neurons derived from a common cortical progenitor pool, thereby recapitulating aspects of in vivo cortical development. We show that the cortical iPSC-derived astrocytes exhibit many of the molecular and functional hallmarks of astrocytes. Furthermore, optogenetic and electrophysiological co-culture experiments reveal that the iPSC-astrocytes can actively modulate ongoing synaptic transmission and exert pro-maturational effects upon developing networks of iPSC-derived cortical neurons. Finally, transcriptomic analyses implicate synapse-associated extracellular signaling in the astrocytes' pro-maturational effects upon the iPSC-derived neurons. This work helps lay the foundation for future investigations into astrocyte-to-neuron interactions in human health and disease.


Subject(s)
Astrocytes/cytology , Cell Differentiation , Cerebral Cortex/cytology , Induced Pluripotent Stem Cells/cytology , Neurons/cytology , Animals , Biomarkers/metabolism , Calcium Signaling , Cell Line , Coculture Techniques , Humans , Neurotransmitter Agents/metabolism , Rats , Synapses/metabolism , Synaptic Transmission , Transcriptome/genetics
17.
Ann Neurol ; 87(6): 853-868, 2020 06.
Article in English | MEDLINE | ID: mdl-32167609

ABSTRACT

OBJECTIVE: Neuronal loss in the substantia nigra pars compacta (SNpc) in Parkinson disease (PD) is not uniform, as dopamine neurons from the ventral tier are lost more rapidly than those of the dorsal tier. Identifying the intrinsic differences that account for this differential vulnerability may provide a key for developing new treatments for PD. METHODS: Here, we compared the RNA-sequenced transcriptomes of ~100 laser captured microdissected SNpc neurons from each tier from 7 healthy controls. RESULTS: Expression levels of dopaminergic markers were similar across the tiers, whereas markers specific to the neighboring ventral tegmental area were virtually undetected. After accounting for unwanted sources of variation, we identified 106 differentially expressed genes (DEGs) between the SNpc tiers. The genes higher in the dorsal/resistant SNpc tier neurons displayed coordinated patterns of expression across the human brain, their protein products had more interactions than expected by chance, and they demonstrated evidence of functional convergence. No significant shared functionality was found for genes higher in the ventral/vulnerable SNpc tier. Surprisingly but importantly, none of the identified DEGs was among the familial PD genes or genome-wide associated loci. Finally, we found some DEGs in opposite tier orientation between human and analogous mouse populations. INTERPRETATION: Our results highlight functional enrichments of vesicular trafficking, ion transport/homeostasis and oxidative stress genes showing higher expression in the resistant neurons of the SNpc dorsal tier. Furthermore, the comparison of gene expression variation in human and mouse SNpc populations strongly argues for the need of human-focused omics studies. ANN NEUROL 2020;87:853-868.


Subject(s)
Dopaminergic Neurons/pathology , Mesencephalon/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Transcriptome , Animals , Gene Expression Regulation/genetics , Genome-Wide Association Study , Healthy Volunteers , Humans , Mice , RNA/genetics , Substantia Nigra/pathology , Ventral Tegmental Area/pathology
19.
Prog Neurobiol ; 187: 101772, 2020 04.
Article in English | MEDLINE | ID: mdl-32058042

ABSTRACT

Mechanistic disease stratification will be crucial to develop a precision medicine approach for future disease modifying therapy in sporadic Parkinson's disease (sPD). Mitochondrial and lysosomal dysfunction are key mechanisms in the pathogenesis of sPD and therefore promising targets for therapeutic intervention. We investigated mitochondrial and lysosomal function in skin fibroblasts of 100 sPD patients and 50 age-matched controls. A combination of cellular assays, RNA-seq based pathway analysis and genotyping was applied. Distinct subgroups with mitochondrial (mito-sPD) or lysosomal (lyso-sPD) dysfunction were identified. Mitochondrial dysfunction correlated with reduction in complex I and IV protein levels. RNA-seq based pathway analysis revealed marked activation of the lysosomal pathway with enrichment for lysosomal disease gene variants in lyso-sPD. Conversion of fibroblasts to induced neuronal progenitor cells and subsequent differentiation into tyrosine hydroxylase positive neurons confirmed and further enhanced both mitochondrial and lysosomal abnormalities. Treatment with ursodeoxycholic acid improved mitochondrial membrane potential and intracellular ATP levels even in sPD patient fibroblast lines with comparatively mild mitochondrial dysfunction. The results of our study suggest that in-depth phenotyping and focussed assessment of putative neuroprotective compounds in peripheral tissue are a promising approach towards disease stratification and precision medicine in sPD.


Subject(s)
Fibroblasts/pathology , Lysosomes/pathology , Mitochondria/pathology , Parkinson Disease/pathology , Aged , Cell Differentiation , Cells, Cultured , Female , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Lysosomes/genetics , Lysosomes/metabolism , Male , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phenotype , Transcriptome , Ursodeoxycholic Acid/pharmacology
20.
Dis Model Mech ; 13(1)2020 01 17.
Article in English | MEDLINE | ID: mdl-31953356

ABSTRACT

Induced pluripotent stem cell (iPSC) technologies have provided in vitro models of inaccessible human cell types, yielding new insights into disease mechanisms especially for neurological disorders. However, without due consideration, the thousands of new human iPSC lines generated in the past decade will inevitably affect the reproducibility of iPSC-based experiments. Differences between donor individuals, genetic stability and experimental variability contribute to iPSC model variation by impacting differentiation potency, cellular heterogeneity, morphology, and transcript and protein abundance. Such effects will confound reproducible disease modelling in the absence of appropriate strategies. In this Review, we explore the causes and effects of iPSC heterogeneity, and propose approaches to detect and account for experimental variation between studies, or even exploit it for deeper biological insight.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Cell Differentiation , Cells, Cultured , Humans , Models, Biological , Mutation , Quantitative Trait Loci , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...