Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Aerosol Med Pulm Drug Deliv ; 35(3): 146-153, 2022 06.
Article in English | MEDLINE | ID: mdl-34647795

ABSTRACT

Background: Inhaled drug delivery can be limited by heterogeneous dose distribution. An additive that would disperse drug over the internal surfaces of the lung after aerosol deposition could improve dosing uniformity and increase the treated area. Our previous studies demonstrated that surfactant additives can produce surface tension-driven (Marangoni) flows that effectively dispersed aerosol-delivered drugs over mucus surfaces. Here we sought to determine whether the addition of a surfactant would increase transport of an aerosol between lung regions and also improve dosing uniformity in human lungs. Methods: We compared the deposition and postdeposition dispersion of surfactant (10 mg/mL dipalmitoylphosphatidylcholine; DPPC) and saline-based liquid aerosols, admixed with Technetium 99m (Tc99m) diethylenetriaminepentaacetic acid, using gamma scintigraphy. Deposition images were obtained ex vivo in eight pairs of ventilated human lungs. The trachea was intubated and the mainstem bronchi were alternately clamped so that saline was delivered to one lung and then DPPC to the other (sides alternated). The lungs were continually imaged for 15 minutes during delivery. We assessed transport of the deposited aerosol by quantifying the percentage of Tc99m in each of four lung quadrants over time. We quantified dose uniformity within each lung quadrant by measuring the coefficient of variation (CV = standard deviation of the pixel associated radioactive counts/mean of the counts within each quadrant). Results: There was no change in the percentage of Tc99m in each quadrant over time, indicating no improvement in transport with the addition of the surfactant. The addition of surfactant was associated with a statistically significant decrease in CV in the lower inner lung quadrant at each of the three time points, indicating an improvement in dosing uniformity. Conclusion: These preliminary results indicate the possible utility of adding surfactant to aerosols to improve drug distribution uniformity to lower inner lung regions.


Subject(s)
Pulmonary Surfactants , Surface-Active Agents , Administration, Inhalation , Aerosols , Excipients , Humans , Lung , Nebulizers and Vaporizers , Technetium Tc 99m Pentetate
2.
Chest ; 160(5): 1604-1613, 2021 11.
Article in English | MEDLINE | ID: mdl-34029561

ABSTRACT

BACKGROUND: Although mucus plugging is a well-reported feature of asthma, whether asthma and type 2 inflammation affect mucociliary clearance (MCC) is unknown. RESEARCH QUESTION: Does type 2 inflammation influence mucus clearance rates in patients with mild asthma who are not receiving corticosteroids? STUDY DESIGN AND METHODS: The clearance rates of inhaled radiolabeled particles were compared between patients with mild asthma with low (n = 17) and high (n = 18) levels of T2 inflammation. Fraction exhaled nitric oxide (Feno) was used to prospectively segregate subjects into T2 Lo (Feno < 25 ppb) and T2 Hi (Feno > 35 ppb) cohorts. Bronchial brush samples were collected with fiber-optic bronchoscopy, and quantitative polymerase chain reaction was performed to measure expression of genes associated with T2 asthma. MCC rate comparisons were also made with a historical group of healthy control subjects (HCs, n = 12). RESULTS: The T2 Lo cohort demonstrated increased MCC when compared with both T2 Hi and historic HCs. MCC within the T2 Hi group varied significantly, with some subjects having low or zero clearance. MCC decreased with increasing expression of several markers of T2 airway inflammation (CCL26, NOS2, and POSTN) and with Feno. MUC5AC and FOXJ1 expression was similar between the T2Lo and T2Hi cohorts. INTERPRETATION: Increasing T2 inflammation was associated with decreasing MCC. High rates of MCC in T2 Lo subjects may indicate a compensatory mechanism present in mild disease but lost with high levels of inflammation. Future studies are required to better understand mechanisms and whether impairments in MCC in more severe asthma drive worse clinical outcomes.


Subject(s)
Asthma , Chemokine CCL26/antagonists & inhibitors , Inflammation/immunology , Mucociliary Clearance/immunology , Nitric Oxide Synthase Type II/analysis , Respiratory Tract Absorption/immunology , Adult , Asthma/diagnosis , Asthma/immunology , Asthma/physiopathology , Bronchial Provocation Tests/methods , Bronchoscopy/methods , Cell Adhesion Molecules , Correlation of Data , Cross-Sectional Studies , Female , Gene Expression Profiling , Humans , Male , Mucus/metabolism , Radiopharmaceuticals/pharmacology , Respiratory Function Tests/methods , Severity of Illness Index
3.
J Aerosol Med Pulm Drug Deliv ; 32(4): 242-249, 2019 08.
Article in English | MEDLINE | ID: mdl-30969149

ABSTRACT

Background: Nuclear imaging biomarkers illustrate unique aspects of lung physiology and are useful for assessing therapeutic effects in cystic fibrosis (CF) lung disease. We have developed a multiprobe method to simultaneously measure mucociliary clearance (MCC) and paracellular absorption (ABS). MCC is a direct measure of mucus clearance. ABS has been related to airway surface liquid (ASL) absorption through previous in vitro studies. Methods: We describe baseline factors affecting MCC and ABS using data from a retrospective baseline group (n = 22) and the response of the measures to inhaled 7% hypertonic saline (HS) and dry powder mannitol using data from a prospective response group (n = 7). A retrospective healthy control group (n = 15) is also described. The baseline and control groups performed single measurements of MCC/ABS. The response group performed baseline measurements of MCC/ABS and measurements after each intervention. Results: ABS was correlated (Spearman's ρ = 0.51, p = 0.06) to sweat chloride, a systemic measure of cystic fibrosis transmembrane conductance regulator (CFTR) function, whereas MCC was not. Baseline MCC was depressed after Pseudomonas aeruginosa infection as we have previously described. MCC provided a more sensitive indication of therapeutic effect and indicated improved clearance with mannitol compared with HS. Conclusion: MCC provides a useful and well-established means of testing therapies directed at improving mucus clearance in the lung. ABS may provide a means of detecting local changes in ASL absorption and CFTR function in the lung. Both are useful tools for studying the key aspects of CF lung pathophysiology (ASL hyperabsorption and MCC depression) that link the basic genetic defects of CF to disease manifestations in the lung.


Subject(s)
Cystic Fibrosis/diagnostic imaging , Lung/diagnostic imaging , Mucociliary Clearance , Pseudomonas Infections/diagnosis , Administration, Inhalation , Adolescent , Adult , Biomarkers/metabolism , Case-Control Studies , Child , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Female , Humans , Lung/physiopathology , Male , Mannitol/administration & dosage , Prospective Studies , Retrospective Studies , Saline Solution, Hypertonic/administration & dosage , Young Adult
4.
Pediatr Pulmonol ; 52(9): 1142-1149, 2017 09.
Article in English | MEDLINE | ID: mdl-28737262

ABSTRACT

AIM: Inhaled hypertonic saline increases mucociliary clearance, improves pulmonary function, and decreases exacerbations in cystic fibrosis (CF) but contributes to the already significant treatment burden of CF. Overnight delivery of inhaled medications via a specially designed nasal cannula-aerosol device (Trans-nasal Pulmonary Aerosol Delivery [tPAD]) is an alternative approach. Here, we test whether overnight inhalation of hypertonic saline via tPAD improves mucociliary clearance and assess the tolerability of the device. METHOD: In this study, 12 CF subjects inhaled 7% hypertonic saline (HS) for 8 h overnight using the tPAD system. Safety and tolerability were assessed and measurements of mucociliary and absorptive clearance (MCC/ABS) were performed after the treatment. Comparisons were made versus sham treatment where the same subjects wore the nasal cannula overnight but did not receive aerosol. RESULTS: Both the HS and sham treatments were well-tolerated. Only one subject did not complete the overnight HS treatment. There were no significant differences in MCC associated with HS inhalation at any time point (90 min, 3 h, 6 h) in any lung zone. Changes in FEV1 on both study days were similar. There were no differences in quality of sleep between HS and sham nights as assessed with the modified Leeds Sleep Evaluation Questionnaire (mLSEQ). Sino-Nasal Outcome Test (SNOT-14) questionnaires demonstrated significant increases (worsening) in 2/14 symptom categories with HS. CONCLUSIONS: The most likely cause for the failure to accelerate MCC was under-dosing of HS relative to the active transport of salt from the airways.


Subject(s)
Cystic Fibrosis/drug therapy , Nasal Sprays , Saline Solution, Hypertonic/administration & dosage , Administration, Inhalation , Adult , Cannula , Cross-Over Studies , Cystic Fibrosis/physiopathology , Female , Humans , Lung/drug effects , Lung/physiopathology , Male , Middle Aged , Mucociliary Clearance/drug effects , Nebulizers and Vaporizers , Saline Solution, Hypertonic/therapeutic use , Sleep , Surveys and Questionnaires , Young Adult
5.
Eur Respir J ; 47(5): 1392-401, 2016 05.
Article in English | MEDLINE | ID: mdl-27009167

ABSTRACT

Airway surface liquid hyperabsorption and mucus accumulation are key elements of cystic fibrosis lung disease that can be assessed in vivo using functional imaging methods. In this study we evaluated experimental factors affecting measurements of mucociliary clearance (MCC) and small-molecule absorption (ABS) and patient factors associated with abnormal absorption and mucus clearance.Our imaging technique utilises two radiopharmaceutical probes delivered by inhalation. Measurement repeatability was assessed in 10 adult cystic fibrosis subjects. Experimental factors were assessed in 29 adult and paediatric cystic fibrosis subjects (51 scans). Patient factors were assessed in a subgroup with optimal aerosol deposition (37 scans; 24 subjects). Paediatric subjects (n=9) underwent initial and 2-year follow-up scans. Control subjects from a previously reported study are included for comparison.High rates of central aerosol deposition influenced measurements of ABS and, to a lesser extent, MCC. Depressed MCC in cystic fibrosis was only detectable in subjects with previous Pseudomonas aeruginosa infection. Cystic fibrosis subjects without P. aeruginosa had similar MCC to control subjects. Cystic fibrosis subjects had consistently higher ABS rates.We conclude that the primary experimental factor affecting MCC/ABS measurements is central deposition percentage. Depressed MCC in cystic fibrosis is associated with P. aeruginosa infection. ABS is consistently increased in cystic fibrosis.


Subject(s)
Cystic Fibrosis/microbiology , Mucociliary Clearance , Pseudomonas Infections/pathology , Pseudomonas aeruginosa , Administration, Inhalation , Adult , Aerosols , Cystic Fibrosis/complications , Disease Progression , Female , Humans , Longitudinal Studies , Male , Middle Aged , Mucus/microbiology , Pseudomonas Infections/complications , Radionuclide Imaging , Radiopharmaceuticals/administration & dosage , Respiratory System/physiopathology , Young Adult
6.
Eur Respir J ; 44(3): 675-84, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24743971

ABSTRACT

New measures are needed to rapidly assess emerging treatments for cystic fibrosis (CF) lung disease. Using an imaging approach, we evaluated the absorptive clearance of the radiolabeled small molecule probe diethylene triamine penta-acetic acid (DTPA) as an in vivo indicator of changes in airway liquid absorption. DTPA absorption and mucociliary clearance rates were measured in 21 patients with CF (12 adults and nine children) and nine adult controls using nuclear imaging. The effect of hypertonic saline on DTPA absorption was also studied. In addition, in vitro studies were conducted to identify the determinants of transepithelial DTPA absorption. CF patients had significantly increased rates of DTPA absorption compared with control subjects but had similar mucociliary clearance rates. Treatment with hypertonic saline resulted in a decrease in DTPA absorption and an increase in mucociliary clearance in 11 out of 11 adult CF patients compared with treatment with isotonic saline. In vitro studies revealed that ∼ 50% of DTPA absorption can be attributed to transepithelial fluid transport. Apically applied mucus impedes liquid and DTPA absorption. However, mucus effects become negligible in the presence of an osmotic stimulus. Functional imaging of DTPA absorption provides a quantifiable marker of immediate response to treatments that promote airway surface liquid hydration.


Subject(s)
Cystic Fibrosis/diagnostic imaging , Adult , Aerosols , Case-Control Studies , Cells, Cultured , Child , Cystic Fibrosis/physiopathology , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Mutation , Osmosis , Pentetic Acid/chemistry , Radionuclide Imaging , Radiopharmaceuticals , Spirometry , Technetium Tc 99m Sulfur Colloid/chemistry , Treatment Outcome , Young Adult
7.
J Shoulder Elbow Surg ; 16(5 Suppl): S215-21, 2007.
Article in English | MEDLINE | ID: mdl-17507245

ABSTRACT

Tendon ruptures are common injuries that are often treated surgically. Growth Differentiation Factor-5 (GDF-5) has been shown to accelerate tendon healing with varying degrees of success. We used a novel technique to apply recombinant human GDF-5 (rhGDF-5) to suture and hypothesized that controlled, local delivery of rhGDF-5 can be used to enhance tendon repair. Tendons of 92 rats were transected and repaired with sutures. All researchers were blinded to the following treatment groups (24 rats in each group): 0 rhGDF (control), 24 ng/cm rhGDF, 55 ng/cm rhGDF, and 556 ng/cm rhGDF. Rats were euthanized at 3 weeks (n = 48) and at 6 weeks (n = 48). Sutures were coated with rhGDF-5 using a novel dip-coat technique. Enzyme-linked immunosorbent assay confirmed consistent and reproducible delivery of rhGDF-5. Within each group, 8 were tested biomechanically, and 4 were assessed histologically. Histologic grading at 3 weeks showed improved healing in tendons repaired with coated suture versus controls. By 6 weeks, there were no significant differences. At 3 weeks, minimal isolated cartilage formation was observed; 6-week samples showed more extensive presence, typically surrounding suture fibers. At 3 weeks, tendons repaired with rhGDF-5-coated sutures resulted in significantly higher ultimate tensile load and stiffness compared with control sutures (P < .05) At 6 weeks, there were no significant differences in the mechanical properties of repaired tendons. At 3 weeks, rhGDF-5 induced significant tendon hypertrophy that was more pronounced than at 6 weeks. In addition, tendons repaired with rhGDF-5 showed an increased rate of healing versus control repairs at 3 weeks. This study showed that a novel dip-coating technique can be used to deliver growth factors in varying concentrations to local repair sites to accelerate tendon healing.


Subject(s)
Bone Morphogenetic Proteins/administration & dosage , Intercellular Signaling Peptides and Proteins/administration & dosage , Tendon Injuries/drug therapy , Wound Healing/drug effects , Animals , Biomechanical Phenomena , Coated Materials, Biocompatible , Disease Models, Animal , Growth Differentiation Factor 5 , Male , Rats , Rats, Sprague-Dawley , Single-Blind Method , Sutures , Tendon Injuries/pathology , Tendon Injuries/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...