Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Influenza Other Respir Viruses ; 18(3): e13269, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494192

ABSTRACT

BACKGROUND: Although psychiatric disorders have been associated with reduced immune responses to other vaccines, it remains unknown whether they influence COVID-19 vaccine effectiveness (VE). This study evaluated risk of COVID-19 hospitalization and estimated mRNA VE stratified by psychiatric disorder status. METHODS: In a retrospective cohort analysis of the VISION Network in four US states, the rate of laboratory-confirmed COVID-19-associated hospitalization between December 2021 and August 2022 was compared across psychiatric diagnoses and by monovalent mRNA COVID-19 vaccination status using Cox proportional hazards regression. RESULTS: Among 2,436,999 adults, 22.1% had ≥1 psychiatric disorder. The incidence of COVID-19-associated hospitalization was higher among patients with any versus no psychiatric disorder (394 vs. 156 per 100,000 person-years, p < 0.001). Any psychiatric disorder (adjusted hazard ratio [aHR], 1.27; 95% CI, 1.18-1.37) and mood (aHR, 1.25; 95% CI, 1.15-1.36), anxiety (aHR, 1.33, 95% CI, 1.22-1.45), and psychotic (aHR, 1.41; 95% CI, 1.14-1.74) disorders were each significant independent predictors of hospitalization. Among patients with any psychiatric disorder, aHRs for the association between vaccination and hospitalization were 0.35 (95% CI, 0.25-0.49) after a recent second dose, 0.08 (95% CI, 0.06-0.11) after a recent third dose, and 0.33 (95% CI, 0.17-0.66) after a recent fourth dose, compared to unvaccinated patients. Corresponding VE estimates were 65%, 92%, and 67%, respectively, and were similar among patients with no psychiatric disorder (68%, 92%, and 79%). CONCLUSION: Psychiatric disorders were associated with increased risk of COVID-19-associated hospitalization. However, mRNA vaccination provided similar protection regardless of psychiatric disorder status, highlighting its benefit for individuals with psychiatric disorders.


Subject(s)
COVID-19 , Mental Disorders , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Retrospective Studies , Mental Disorders/epidemiology , Vaccination , Hospitalization , RNA, Messenger
2.
MMWR Morb Mortal Wkly Rep ; 73(12): 271-276, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38547037

ABSTRACT

In September 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccination for all persons aged ≥6 months to prevent COVID-19, including severe disease. As with past COVID-19 vaccines, additional doses may be considered for persons with immunocompromising conditions, who are at higher risk for severe COVID-19 and might have decreased response to vaccination. In this analysis, vaccine effectiveness (VE) of an updated COVID-19 vaccine dose against COVID-19-associated hospitalization was evaluated during September 2023-February 2024 using data from the VISION VE network. Among adults aged ≥18 years with immunocompromising conditions, VE against COVID-19-associated hospitalization was 38% in the 7-59 days after receipt of an updated vaccine dose and 34% in the 60-119 days after receipt of an updated dose. Few persons (18%) in this high-risk study population had received updated COVID-19 vaccine. All persons aged ≥6 months should receive updated 2023-2024 COVID-19 vaccination; persons with immunocompromising conditions may get additional updated COVID-19 vaccine doses ≥2 months after the last recommended COVID-19 vaccine.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Adult , United States/epidemiology , Humans , Adolescent , Influenza, Human/epidemiology , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Hospitalization
3.
MMWR Morb Mortal Wkly Rep ; 73(8): 168-174, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421935

ABSTRACT

In the United States, annual influenza vaccination is recommended for all persons aged ≥6 months. Using data from four vaccine effectiveness (VE) networks during the 2023-24 influenza season, interim influenza VE was estimated among patients aged ≥6 months with acute respiratory illness-associated medical encounters using a test-negative case-control study design. Among children and adolescents aged 6 months-17 years, VE against influenza-associated outpatient visits ranged from 59% to 67% and against influenza-associated hospitalization ranged from 52% to 61%. Among adults aged ≥18 years, VE against influenza-associated outpatient visits ranged from 33% to 49% and against hospitalization from 41% to 44%. VE against influenza A ranged from 46% to 59% for children and adolescents and from 27% to 46% for adults across settings. VE against influenza B ranged from 64% to 89% for pediatric patients in outpatient settings and from 60% to 78% for all adults across settings. These findings demonstrate that the 2023-24 seasonal influenza vaccine is effective at reducing the risk for medically attended influenza virus infection. CDC recommends that all persons aged ≥6 months who have not yet been vaccinated this season get vaccinated while influenza circulates locally.


Subject(s)
Influenza Vaccines , Influenza, Human , Adolescent , Adult , Humans , Child , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Case-Control Studies , Vaccine Efficacy
4.
Commun Biol ; 7(1): 194, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365885

ABSTRACT

Diet is a key lifestyle component that influences metabolic health through several factors, including total energy intake and macronutrient composition. While the impact of caloric intake on gene expression and physiological phenomena in various tissues is well described, the influence of dietary macronutrient composition on these parameters is less well studied. Here, we use the Nutritional Geometry framework to investigate the role of macronutrient composition on metabolic function and gene regulation in adipose tissue. Using ten isocaloric diets that vary systematically in their proportion of energy from fat, protein, and carbohydrates, we find that gene expression and splicing are highly responsive to macronutrient composition, with distinct sets of genes regulated by different macronutrient interactions. Specifically, the expression of many genes associated with Bardet-Biedl syndrome is responsive to dietary fat content. Splicing and expression changes occur in largely separate gene sets, highlighting distinct mechanisms by which dietary composition influences the transcriptome and emphasizing the importance of considering splicing changes to more fully capture the gene regulation response to environmental changes such as diet. Our study provides insight into the gene regulation plasticity of adipose tissue in response to macronutrient composition, beyond the already well-characterized response to caloric intake.


Subject(s)
Adipose Tissue , Diet , Dietary Fats , Energy Intake/genetics , Nutrients
5.
MMWR Morb Mortal Wkly Rep ; 73(8): 180-188, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421945

ABSTRACT

In September 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccination for all persons aged ≥6 months to prevent COVID-19, including severe disease. However, few estimates of updated vaccine effectiveness (VE) against medically attended illness are available. This analysis evaluated VE of an updated COVID-19 vaccine dose against COVID-19-associated emergency department (ED) or urgent care (UC) encounters and hospitalization among immunocompetent adults aged ≥18 years during September 2023-January 2024 using a test-negative, case-control design with data from two CDC VE networks. VE against COVID-19-associated ED/UC encounters was 51% (95% CI = 47%-54%) during the first 7-59 days after an updated dose and 39% (95% CI = 33%-45%) during the 60-119 days after an updated dose. VE estimates against COVID-19-associated hospitalization from two CDC VE networks were 52% (95% CI = 47%-57%) and 43% (95% CI = 27%-56%), with a median interval from updated dose of 42 and 47 days, respectively. Updated COVID-19 vaccine provided increased protection against COVID-19-associated ED/UC encounters and hospitalization among immunocompetent adults. These results support CDC recommendations for updated 2023-2024 COVID-19 vaccination. All persons aged ≥6 months should receive updated 2023-2024 COVID-19 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , Advisory Committees , Emergency Service, Hospital , Hospitalization
6.
J Sport Rehabil ; : 1-8, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253049

ABSTRACT

CONTEXT: Collegiate athletes who are deaf or hard-of-hearing (D/HoH) are diagnosed with concussions at a similar rate as athletes who are hearing; however, little evidence exists on knowledge and attitudes of athletes who are D/HoH toward concussions. This study aimed to examine differences in knowledge of and attitudes toward concussions between athletes who are D/HoH and athletes who are hearing. DESIGN: Cross-sectional research design. METHODS: Of the 310 athletes who are D/HoH and 430 athletes who are hearing that were invited to participate, 90 athletes who are D/HoH, and 72 athletes who are hearing completed the survey. The Rosenbaum Concussion Knowledge and Attitudes Survey was used to quantify knowledge of and attitude toward concussions. The Rosenbaum Concussion Knowledge and Attitudes Survey consists of the concussion knowledge index (CKI) and the concussion attitudes index (CAI) subscales. Linear regressions were run to test the association of hearing status with CKI and CAI scores. Pearson correlations were performed to determine relationships between CKI and CAI for athletes who are D/HoH and athletes who are hearing. Alpha level was set a priori at P ≤ .05. RESULTS: Athletes who are hearing demonstrated a higher CKI component score (19.58 [2.19]) compared to athletes who are D/HoH (16.14 [3.31]; P < .001). There were no statistical differences in CAI between hearing groups (hearing: 57.18 [8.73], D/HoH: 55.97 [9.92]; P = .41). There was a moderate positive correlation between CKI and CAI (r = .58) for athletes who are D/HoH, while a weak positive correlation (r = .30) for athletes who are hearing was observed. CONCLUSIONS: Athletes who are D/HoH have poorer knowledge of concussions but similar attitudes toward concussion as that of athletes who are hearing. Current concussion educational interventions are in written or spoken form which may not be inclusive to athletes who are D/HoH. Health care professionals should consider an athlete's preferred communication mode to improve the efficiency and effectiveness of education.

7.
Perfusion ; 39(3): 585-592, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36725017

ABSTRACT

Introduction: Elevations in serum ferritin and serum iron occur during pediatric extracorporeal membrane oxygenation (ECMO). Previous reports attribute the elevation to frequent red blood cell transfusions and/or hemolysis. Chronic transfusion can cause iron deposition in tissues leading to multisystem organ dysfunction. This study aims identify clinical factors associated with elevated ferritin and iron in pediatric ECMO patients, along with post-decannulation magnetic resonance imaging (MRI) assessment of iron deposition in liver and brain.Methods: Prospective, pilot study, using descriptive statistics to investigate potential associations between patient characteristics, serum ferritin and iron levels, and post-decannulation hepatic and basal ganglia iron deposition.Results: In this study, nine patients (100%) had elevated serum ferritin levels during ECMO. High ferritin levels were more common with veno-arterial than with veno-venous cannulation (p = 0.026) and were also associated with high plasma free hemoglobin levels (p < 0.001). Five patients presented with elevated serum iron levels. High serum iron levels were associated with higher daily (p = 0.016) and cumulative transfusion volumes (p = 0.013) as well ECMO duration beyond 7 days. MRI scans were performed on three patients with no evidence of abnormal iron deposition detected in the liver or brain.Conclusions: This pilot study shows that during pediatric ECMO, elevations in serum ferritin and serum iron occur and those elevations may be related to the cannulation modality, ECMO duration, amount of hemolysis, and volume of red blood cell transfusions. Further investigation is warranted to fully understand the implications of elevated serum iron and ferritin in pediatric ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Humans , Child , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/methods , Pilot Projects , Iron , Ferritins , Hemolysis , Prospective Studies , Retrospective Studies
8.
Clin Infect Dis ; 78(3): 746-755, 2024 03 20.
Article in English | MEDLINE | ID: mdl-37972288

ABSTRACT

BACKGROUND: During the 2022-2023 influenza season, the United States experienced the highest influenza-associated pediatric hospitalization rate since 2010-2011. Influenza A/H3N2 infections were predominant. METHODS: We analyzed acute respiratory illness (ARI)-associated emergency department or urgent care (ED/UC) encounters or hospitalizations at 3 health systems among children and adolescents aged 6 months-17 years who had influenza molecular testing during October 2022-March 2023. We estimated influenza A vaccine effectiveness (VE) using a test-negative approach. The odds of vaccination among influenza-A-positive cases and influenza-negative controls were compared after adjusting for confounders and applying inverse-propensity-to-be-vaccinated weights. We developed overall and age-stratified VE models. RESULTS: Overall, 13 547 of 44 787 (30.2%) eligible ED/UC encounters and 263 of 1862 (14.1%) hospitalizations were influenza-A-positive cases. Among ED/UC patients, 15.2% of influenza-positive versus 27.1% of influenza-negative patients were vaccinated; VE was 48% (95% confidence interval [CI], 44-52%) overall, 53% (95% CI, 47-58%) among children aged 6 months-4 years, and 38% (95% CI, 30-45%) among those aged 9-17 years. Among hospitalizations, 17.5% of influenza-positive versus 33.4% of influenza-negative patients were vaccinated; VE was 40% (95% CI, 6-61%) overall, 56% (95% CI, 23-75%) among children ages 6 months-4 years, and 46% (95% CI, 2-70%) among those 5-17 years. CONCLUSIONS: During the 2022-2023 influenza season, vaccination reduced the risk of influenza-associated ED/UC encounters and hospitalizations by almost half (overall VE, 40-48%). Influenza vaccination is a critical tool to prevent moderate-to-severe influenza illness in children and adolescents.


Subject(s)
Influenza Vaccines , Influenza, Human , Adolescent , Child , Humans , United States/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , Hospitalization , Vaccination , Emergency Service, Hospital , Hospitals
9.
J Infect Dis ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041853

ABSTRACT

BACKGROUND: The 2022-2023 United States influenza season had unusually early influenza activity with high hospitalization rates. Vaccine-matched A(H3N2) viruses predominated, with lower levels of A(H1N1)pdm09 activity also observed. METHODS: Using the test-negative design, we evaluated influenza vaccine effectiveness (VE) during the 2022-2023 season against influenza-A-associated emergency department/urgent care (ED/UC) visits and hospitalizations from October 2022-March 2023 among adults (age ≥18 years) with acute respiratory illness (ARI). VE was estimated by comparing odds of seasonal influenza vaccination among case-patients (influenza A test-positive by molecular assay) and controls (influenza test-negative), applying inverse-propensity-to-be-vaccinated weights. RESULTS: The analysis included 85,389 ED/UC ARI encounters (17.0% influenza-A-positive; 37.8% vaccinated overall) and 19,751 hospitalizations (9.5% influenza-A-positive; 52.8% vaccinated overall). VE against influenza-A-associated ED/UC encounters was 44% (95% confidence interval [95%CI]: 40-47%) overall and 45% and 41% among adults aged 18-64 and ≥65 years, respectively. VE against influenza-A-associated hospitalizations was 35% (95%CI: 27-43%) overall and 23% and 41% among adults aged 18-64 and ≥65 years, respectively. CONCLUSIONS: VE was moderate during the 2022-2023 influenza season, a season characterized with increased burden of influenza and co-circulation with other respiratory viruses. Vaccination is likely to substantially reduce morbidity, mortality, and strain on healthcare resources.

10.
Vaccine ; 41(51): 7581-7586, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38000964

ABSTRACT

Test-negative-design COVID-19 vaccine effectiveness (VE) studies use symptomatic SARS-CoV-2-positive individuals as cases and symptomatic SARS-CoV-2-negative individuals as controls to evaluate COVID-19 VE. To evaluate the potential bias introduced by the correlation of COVID-19 and influenza vaccination behaviors, we assessed changes in estimates of VE of bivalent vaccines against COVID-19-associated hospitalizations and emergency department/urgent care (ED/UC) encounters when considering influenza vaccination status or including or excluding influenza-positive controls using data from the multi-state VISION vaccine effectiveness network. Analyses included encounters during October 2022 - February 2023, a period of SARS-CoV-2 and influenza cocirculation. When considering influenza vaccination status or including or excluding influenza-positive controls, COVID-19 VE estimates were robust, with most VE estimates against COVID-19-associated hospitalization and ED/UC encounters changing less than 5 percentage points. Higher proportions of influenza-positive patients among controls, influenza vaccination coverage, or VE could impact these findings; the potential bias should continue to be assessed.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , COVID-19 Vaccines , Vaccine Efficacy , COVID-19/prevention & control , SARS-CoV-2 , Vaccination
11.
MMWR Morb Mortal Wkly Rep ; 72(33): 886-892, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37590187

ABSTRACT

On June 19, 2022, the original monovalent mRNA COVID-19 vaccines were approved as a primary series for children aged 6 months-4 years (Pfizer-BioNTech) and 6 months-5 years (Moderna) based on safety, immunobridging, and limited efficacy data from clinical trials. On December 9, 2022, CDC expanded recommendations for use of updated bivalent vaccines to children aged ≥6 months. mRNA COVID-19 vaccine effectiveness (VE) against emergency department or urgent care (ED/UC) encounters was evaluated within the VISION Network during July 4, 2022-June 17, 2023, among children with COVID-19-like illness aged 6 months-5 years. Among children aged 6 months-5 years who received molecular SARS-CoV-2 testing during August 1, 2022-June 17, 2023, VE of 2 monovalent Moderna doses against ED/UC encounters was 29% (95% CI = 12%-42%) ≥14 days after dose 2 (median = 100 days after dose 2; IQR = 63-155 days). Among children aged 6 months-4 years with a COVID-19-like illness who received molecular testing during September 19, 2022-June 17, 2023, VE of 3 monovalent Pfizer-BioNTech doses was 43% (95% CI = 17%-61%) ≥14 days after dose 3 (median = 75 days after dose 3; IQR = 40-139 days). Effectiveness of ≥1 bivalent dose, comparing children with at least a complete primary series and ≥1 bivalent dose to unvaccinated children, irrespective of vaccine manufacturer, was 80% (95% CI = 42%-96%) among children aged 6 months-5 years a median of 58 days (IQR = 32-83 days) after the dose. All children should stay up to date with recommended COVID-19 vaccines, including initiation of COVID-19 vaccination immediately when they are eligible.


Subject(s)
COVID-19 , United States/epidemiology , Child , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Vaccines, Combined , COVID-19 Testing , SARS-CoV-2/genetics , Emergency Service, Hospital , RNA, Messenger , mRNA Vaccines
12.
Vaccine ; 41(37): 5424-5434, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37479609

ABSTRACT

BACKGROUND: Immunocompromised (IC) persons are at increased risk for severe COVID-19 outcomes and are less protected by 1-2 COVID-19 vaccine doses than are immunocompetent (non-IC) persons. We compared vaccine effectiveness (VE) against medically attended COVID-19 of 2-3 mRNA and 1-2 viral-vector vaccine doses between IC and non-IC adults. METHODS: Using a test-negative design among eight VISION Network sites, VE against laboratory-confirmed COVID-19-associated emergency department (ED) or urgent care (UC) events and hospitalizations from 26 August-25 December 2021 was estimated separately among IC and non-IC adults and among specific IC condition subgroups. Vaccination status was defined using number and timing of doses. VE for each status (versus unvaccinated) was adjusted for age, geography, time, prior positive test result, and local SARS-CoV-2 circulation. RESULTS: We analyzed 8,848 ED/UC events and 18,843 hospitalizations among IC patients and 200,071 ED/UC events and 70,882 hospitalizations among non-IC patients. Among IC patients, 3-dose mRNA VE against ED/UC (73% [95% CI: 64-80]) and hospitalization (81% [95% CI: 76-86]) was lower than that among non-IC patients (ED/UC: 94% [95% CI: 93-94]; hospitalization: 96% [95% CI: 95-97]). Similar patterns were observed for viral-vector vaccines. Transplant recipients had lower VE than other IC subgroups. CONCLUSIONS: During B.1.617.2 (Delta) variant predominance, IC adults received moderate protection against COVID-19-associated medical events from three mRNA doses, or one viral-vector dose plus a second dose of any product. However, protection was lower in IC versus non-IC patients, especially among transplant recipients, underscoring the need for additional protection among IC adults.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Adult , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Emergency Service, Hospital , Hospitalization , RNA, Messenger
14.
MMWR Morb Mortal Wkly Rep ; 72(21): 579-588, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37227984

ABSTRACT

On September 1, 2022, CDC's Advisory Committee on Immunization Practices (ACIP) recommended a single bivalent mRNA COVID-19 booster dose for persons aged ≥12 years who had completed at least a monovalent primary series. Early vaccine effectiveness (VE) estimates among adults aged ≥18 years showed receipt of a bivalent booster dose provided additional protection against COVID-19-associated emergency department and urgent care visits and hospitalizations compared with that in persons who had received only monovalent vaccine doses (1); however, insufficient time had elapsed since bivalent vaccine authorization to assess the durability of this protection. The VISION Network* assessed VE against COVID-19-associated hospitalizations by time since bivalent vaccine receipt during September 13, 2022-April 21, 2023, among adults aged ≥18 years with and without immunocompromising conditions. During the first 7-59 days after vaccination, compared with no vaccination, VE for receipt of a bivalent vaccine dose among adults aged ≥18 years was 62% (95% CI = 57%-67%) among adults without immunocompromising conditions and 28% (95% CI = 10%-42%) among adults with immunocompromising conditions. Among adults without immunocompromising conditions, VE declined to 24% (95% CI = 12%-33%) among those aged ≥18 years by 120-179 days after vaccination. VE was generally lower for adults with immunocompromising conditions. A bivalent booster dose provided the highest protection, and protection was sustained through at least 179 days against critical outcomes, including intensive care unit (ICU) admission or in-hospital death. These data support updated recommendations allowing additional optional bivalent COVID-19 vaccine doses for certain high-risk populations. All eligible persons should stay up to date with recommended COVID-19 vaccines.


Subject(s)
COVID-19 , Critical Illness , Hospitalization , Adolescent , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Hospital Mortality , mRNA Vaccines , Vaccines, Combined
15.
MMWR Morb Mortal Wkly Rep ; 71(53): 1637-1646, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36921274

ABSTRACT

During June-October 2022, the SARS-CoV-2 Omicron BA.5 sublineage accounted for most of the sequenced viral genomes in the United States, with further Omicron sublineage diversification through November 2022.* Bivalent mRNA vaccines contain an ancestral SARS-CoV-2 strain component plus an updated component of the Omicron BA.4/BA.5 sublineages. On September 1, 2022, a single bivalent booster dose was recommended for adults who had completed a primary vaccination series (with or without subsequent booster doses), with the last dose administered ≥2 months earlier (1). During September 13-November 18, the VISION Network evaluated vaccine effectiveness (VE) of a bivalent mRNA booster dose (after 2, 3, or 4 monovalent doses) compared with 1) no previous vaccination and 2) previous receipt of 2, 3, or 4 monovalent-only mRNA vaccine doses, among immunocompetent adults aged ≥18 years with an emergency department/urgent care (ED/UC) encounter or hospitalization for a COVID-19-like illness.† VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated ED/UC encounters was 56% compared with no vaccination, 32% compared with monovalent vaccination only with last dose 2-4 months earlier, and 50% compared with monovalent vaccination only with last dose ≥11 months earlier. VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated hospitalizations was 59% compared with no vaccination, 42% compared with monovalent vaccination only with last dose 5-7 months earlier, and 48% compared with monovalent vaccination only with last dose ≥11 months earlier. Bivalent vaccines administered after 2, 3, or 4 monovalent doses were effective in preventing medically attended COVID-19 compared with no vaccination and provided additional protection compared with past monovalent vaccination only, with relative protection increasing with time since receipt of the last monovalent dose. All eligible persons should stay up to date with recommended COVID-19 vaccinations, including receiving a bivalent booster dose. Persons should also consider taking additional precautions to avoid respiratory illness this winter season, such as masking in public indoor spaces, especially in areas where COVID-19 community levels are high.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccine Efficacy , Emergency Service, Hospital , Hospitalization , RNA, Messenger , Vaccines, Combined
16.
Nat Genet ; 55(3): 461-470, 2023 03.
Article in English | MEDLINE | ID: mdl-36797366

ABSTRACT

Obesity-associated morbidity is exacerbated by abdominal obesity, which can be measured as the waist-to-hip ratio adjusted for the body mass index (WHRadjBMI). Here we identify genes associated with obesity and WHRadjBMI and characterize allele-sensitive enhancers that are predicted to regulate WHRadjBMI genes in women. We found that several waist-to-hip ratio-associated variants map within primate-specific Alu retrotransposons harboring a DNA motif associated with adipocyte differentiation. This suggests that a genetic component of adipose distribution in humans may involve co-option of retrotransposons as adipose enhancers. We evaluated the role of the strongest female WHRadjBMI-associated gene, SNX10, in adipose biology. We determined that it is required for human adipocyte differentiation and function and participates in diet-induced adipose expansion in female mice, but not males. Our data identify genes and regulatory mechanisms that underlie female-specific adipose distribution and mediate metabolic dysfunction in women.


Subject(s)
Obesity , Retroelements , Humans , Female , Animals , Mice , Obesity/genetics , Obesity/metabolism , Adiposity/genetics , Body Mass Index , Waist-Hip Ratio , Adipose Tissue/metabolism , Sorting Nexins/genetics , Sorting Nexins/metabolism
18.
J Infect Dis ; 228(2): 185-195, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36683410

ABSTRACT

BACKGROUND: Following historically low influenza activity during the 2020-2021 season, the United States saw an increase in influenza circulating during the 2021-2022 season. Most viruses belonged to the influenza A(H3N2) 3C.2a1b 2a.2 subclade. METHODS: We conducted a test-negative case-control analysis among adults ≥18 years of age at 3 sites within the VISION Network. Encounters included emergency department/urgent care (ED/UC) visits or hospitalizations with ≥1 acute respiratory illness (ARI) discharge diagnosis codes and molecular testing for influenza. Vaccine effectiveness (VE) was calculated by comparing the odds of influenza vaccination ≥14 days before the encounter date between influenza-positive cases (type A) and influenza-negative and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative controls, applying inverse probability-to-be-vaccinated weights, and adjusting for confounders. RESULTS: In total, 86 732 ED/UC ARI-associated encounters (7696 [9%] cases) and 16 805 hospitalized ARI-associated encounters (649 [4%] cases) were included. VE against influenza-associated ED/UC encounters was 25% (95% confidence interval (CI), 20%-29%) and 25% (95% CI, 11%-37%) against influenza-associated hospitalizations. VE against ED/UC encounters was lower in adults ≥65 years of age (7%; 95% CI, -5% to 17%) or with immunocompromising conditions (4%; 95% CI, -45% to 36%). CONCLUSIONS: During an influenza A(H3N2)-predominant influenza season, modest VE was observed. These findings highlight the need for improved vaccines, particularly for A(H3N2) viruses that are historically associated with lower VE.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Humans , United States/epidemiology , Child, Preschool , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Emergency Service, Hospital , Ambulatory Care , Hospitals , Case-Control Studies
19.
Clin Infect Dis ; 76(9): 1615-1625, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36611252

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) vaccination coverage remains lower in communities with higher social vulnerability. Factors such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure risk and access to healthcare are often correlated with social vulnerability and may therefore contribute to a relationship between vulnerability and observed vaccine effectiveness (VE). Understanding whether these factors impact VE could contribute to our understanding of real-world VE. METHODS: We used electronic health record data from 7 health systems to assess vaccination coverage among patients with medically attended COVID-19-like illness. We then used a test-negative design to assess VE for 2- and 3-dose messenger RNA (mRNA) adult (≥18 years) vaccine recipients across Social Vulnerability Index (SVI) quartiles. SVI rankings were determined by geocoding patient addresses to census tracts; rankings were grouped into quartiles for analysis. RESULTS: In July 2021, primary series vaccination coverage was higher in the least vulnerable quartile than in the most vulnerable quartile (56% vs 36%, respectively). In February 2022, booster dose coverage among persons who had completed a primary series was higher in the least vulnerable quartile than in the most vulnerable quartile (43% vs 30%). VE among 2-dose and 3-dose recipients during the Delta and Omicron BA.1 periods of predominance was similar across SVI quartiles. CONCLUSIONS: COVID-19 vaccination coverage varied substantially by SVI. Differences in VE estimates by SVI were minimal across groups after adjusting for baseline patient factors. However, lower vaccination coverage among more socially vulnerable groups means that the burden of illness is still disproportionately borne by the most socially vulnerable populations.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Social Vulnerability , SARS-CoV-2 , COVID-19 Vaccines , Vaccination Coverage , Vaccine Efficacy
20.
Nat Commun ; 13(1): 7475, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463275

ABSTRACT

Cell-free DNA (cfDNA) has the potential to inform tumor subtype classification and help guide clinical precision oncology. Here we develop Griffin, a framework for profiling nucleosome protection and accessibility from cfDNA to study the phenotype of tumors using as low as 0.1x coverage whole genome sequencing data. Griffin employs a GC correction procedure tailored to variable cfDNA fragment sizes, which generates a better representation of chromatin accessibility and improves the accuracy of cancer detection and tumor subtype classification. We demonstrate estrogen receptor subtyping from cfDNA in metastatic breast cancer. We predict estrogen receptor subtype in 139 patients with at least 5% detectable circulating tumor DNA with an area under the receive operator characteristic curve (AUC) of 0.89 and validate performance in independent cohorts (AUC = 0.96). In summary, Griffin is a framework for accurate tumor subtyping and can be generalizable to other cancer types for precision oncology applications.


Subject(s)
Cell-Free Nucleic Acids , Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Nucleosomes/genetics , Neoplasms/diagnosis , Neoplasms/genetics , Receptors, Estrogen , Precision Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...