Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Neurobiol Stress ; 29: 100614, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38357099

ABSTRACT

Depression during pregnancy is detrimental for the wellbeing of the expectant mother and can exert long-term consequences on the offspring's development and mental health. In this context, both the gestational environment and the postpartum milieu may be negatively affected by the depressive pathology. It is, however, challenging to assess whether the contributions of prenatal and postnatal depression exposure are distinct, interactive, or cumulative, as it is unclear whether antenatal effects are due to direct effects on fetal development or because antenatal symptoms continue postnatally. Preclinical models have sought to answer this question by implementing stressors that induce a depressive-like state in the dams during pregnancy and studying the effects on the offspring. The aim of our present study was to disentangle the contribution of direct stress in utero from possible changes in maternal behavior in a novel model of preconceptional stress based on social isolation rearing (SIR). Using a cross-fostering paradigm in this model, we show that while SIR leads to subtle changes in maternal behavior, the behavioral changes observed in the offspring are driven by a complex interaction between sex, and prenatal and postnatal maternal factors. Indeed, male offspring are more sensitive to the prenatal environment, as demonstrated by behavioral and transcriptional changes driven by their birth mother, while females are likely affected by more complex interactions between the pre and the postpartum milieu, as suggested by the important impact of their surrogate foster mother. Taken together, our findings suggest that male and female offspring have different time-windows and behavioral domains of susceptibility to maternal preconceptional stress, and thus underscore the importance of including both sexes when investigating the mechanisms that mediate the negative consequences of exposure to such stressor.

2.
Lab Anim (NY) ; 53(1): 18-22, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38151528

ABSTRACT

Theoretical and empirical evidence indicates that low external validity due to rigorous standardization of study populations is a cause of poor replicability in animal research. Here we report a multi-laboratory study aimed at investigating whether heterogenization of study populations by using animals from different breeding sites increases the replicability of results from single-laboratory studies. We used male C57BL/6J mice from six different breeding sites to test a standardized against a heterogenized (HET) study design in six independent replicate test laboratories. For the standardized design, each laboratory ordered mice from a single breeding site (each laboratory from a different one), while for the HET design, each laboratory ordered proportionate numbers of mice from the five remaining breeding sites. To test our hypothesis, we assessed 14 outcome variables, including body weight, behavioral measures obtained from a single session on an elevated plus maze, and clinical blood parameters. Both breeding site and test laboratory affected variation in outcome variables, but the effect of test laboratory was more pronounced for most outcome variables. Moreover, heterogenization of study populations by breeding site (HET) did not reduce variation in outcome variables between test laboratories, which was most likely due to the fact that breeding site had only little effect on variation in outcome variables, thereby limiting the scope for HET to reduce between-lab variation. We conclude that heterogenization of study populations by breeding site has limited capacity for improving the replicability of results from single-laboratory animal studies.


Subject(s)
Animal Experimentation , Behavior, Animal , Animals , Mice , Male , Mice, Inbred C57BL , Research Design
3.
Proc Natl Acad Sci U S A ; 120(38): e2308187120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37695891

ABSTRACT

The human endogenous retrovirus type W (HERV-W) has been identified and repeatedly confirmed as human-specific pathogenic entity affecting many cell types in multiple sclerosis (MS). Our recent contributions revealed the encoded envelope (ENV) protein to disturb myelin repair by interfering with oligodendroglial precursor differentiation and by polarizing microglial cells toward an axon-damage phenotype. Indirect proof of ENV's antiregenerative and degenerative activities has been gathered recently in clinical trials using a neutralizing anti-ENV therapeutic antibody. Yet direct proof of its mode of action can only be presented here based on transgenic ENV expression in mice. Upon demyelination, we observed myelin repair deficits, neurotoxic microglia and astroglia, and increased axon degeneration. Experimental autoimmune encephalomyelitis activity progressed faster in mutant mice equally accompanied by activated glial cells. This study therefore provides direct evidence on HERV-W ENV's contribution to the overall negative impact of this activated viral entity in MS.


Subject(s)
Endogenous Retroviruses , Multiple Sclerosis , Humans , Animals , Mice , Endogenous Retroviruses/genetics , Neuroglia , Animals, Genetically Modified , Myelin Sheath , Multiple Sclerosis/genetics
4.
Discov Ment Health ; 3(1): 15, 2023.
Article in English | MEDLINE | ID: mdl-37622027

ABSTRACT

Adverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment. The ensuing consequence of MIA for offspring brain structure and function are majorly manifested in behavioral and cognitive abnormalities, phenotypically presenting during the periods of adolescence and adulthood. These observations have been interpreted within the framework of the "double-hit-hypothesis" suggesting that an elevated risk for neurodevelopmental disorders results from an individual being subjected to two adverse environmental influences at distinct periods of life, jointly leading to the emergence of pathology. The early postnatal period, during which the caregiving parent is the major determinant of the newborn´s environment, constitutes a window of vulnerability to external stimuli. Considering that MIA not only affects the developing fetus, but also impinges on the mother´s brain, which is in a state of heightened malleability during pregnancy, the impact of MIA on maternal brain function and behavior postpartum may importantly contribute to the detrimental consequences for her progeny. Here we review current information on the interaction between the prenatal and postnatal maternal environments in the modulation of offspring development and their relevance for the pathophysiology of the MIA model.

5.
Brain Pathol ; 33(6): e13189, 2023 11.
Article in English | MEDLINE | ID: mdl-37505935

ABSTRACT

Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.


Subject(s)
Brain Diseases , Neurodegenerative Diseases , Vascular Calcification , Humans , Animals , Mice , Brain Diseases/pathology , Phosphates/metabolism , Brain/pathology , Xenotropic and Polytropic Retrovirus Receptor , Vascular Calcification/metabolism , Vascular Calcification/pathology , Neurodegenerative Diseases/pathology , Mutation , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism
6.
Cereb Cortex ; 33(5): 2273-2286, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36857721

ABSTRACT

Prenatal exposure to infectious or noninfectious immune activation is an environmental risk factor for neurodevelopmental disorders and mental illnesses. Recent research using animal models suggests that maternal immune activation (MIA) during early to middle stages of pregnancy can induce transgenerational effects on brain and behavior, likely via inducing stable epigenetic modifications across generations. Using a mouse model of viral-like MIA, which is based on gestational treatment with poly(I:C), the present study explored whether transgenerational effects can also emerge when MIA occurs in late pregnancy. Our findings demonstrate that the direct descendants born to poly(I:C)-treated mothers display deficits in temporal order memory, which are similarly present in second- and third-generation offspring. These transgenerational effects were mediated via both the maternal and paternal lineages and were accompanied by transient changes in maternal care. In addition to the cognitive effects, late prenatal immune activation induced generation-spanning effects on the prefrontal expression of gamma-aminobutyric acid (GABA)ergic genes, including parvalbumin and distinct alpha-subunits of the GABAA receptor. Together, our results suggest that MIA in late pregnancy has the potential to affect cognitive functions and prefrontal gene expression patterns in multiple generations, highlighting its role in shaping disease risk across generations.


Subject(s)
Brain , Cognition , Immune System Phenomena , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Disease Models, Animal , Epigenesis, Genetic , Poly I-C , Mice
7.
Brain Behav Immun ; 107: 242-252, 2023 01.
Article in English | MEDLINE | ID: mdl-36270439

ABSTRACT

Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.


Subject(s)
Endogenous Retroviruses , Mental Disorders , Humans , Endogenous Retroviruses/genetics , Mental Disorders/genetics
8.
Brain Behav Immun ; 107: 201-214, 2023 01.
Article in English | MEDLINE | ID: mdl-36243285

ABSTRACT

Endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into the mammalian genome through germline infections and insertions during evolution. While increased ERV expression has been repeatedly implicated in psychiatric and neurodevelopmental disorders, recent evidence suggests that aberrant endogenous retroviral activity may contribute to biologically defined subgroups of psychotic disorders with persisting immunological dysfunctions. Here, we explored whether ERV expression is altered in a mouse model of maternal immune activation (MIA), a transdiagnostic environmental risk factor of psychiatric and neurodevelopmental disorders. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Murine ERV transcripts were quantified in the placentae and fetal brains shortly after poly(I:C)-induced MIA, as well as in adult offspring that were stratified according to their behavioral profiles. We found that MIA increased and reduced levels of class II ERVs and syncytins, respectively, in placentae and fetal brain tissue. We also revealed abnormal ERV expression in MIA-exposed offspring depending on whether they displayed overt behavioral anomalies or not. Taken together, our findings provide a proof of concept that an inflammatory stimulus, even when initiated in prenatal life, has the potential of altering ERV expression across fetal to adult stages of development. Moreover, our data highlight that susceptibility and resilience to MIA are associated with differential ERV expression, suggesting that early-life exposure to inflammatory factors may play a role in determining disease susceptibility by inducing persistent alterations in the expression of endogenous retroviral elements.


Subject(s)
Family , Vitamins , Animals , Mice , Mice, Inbred C57BL , Mammals
9.
Brain Behav Immun ; 106: 270-279, 2022 11.
Article in English | MEDLINE | ID: mdl-36115545

ABSTRACT

Mechanistic target of rapamycin (mTOR)-signaling is one key driver of glioblastoma (GBM), facilitating tumor growth by promoting the shift to an anti-inflammatory, pro-cancerogenic microenvironment. Even though mTOR inhibitors such as rapamycin (RAPA) have been shown to interfere with GBM disease progression, frequently chaperoned toxic drug side effects urge the need for developing alternative or supportive treatment strategies. Importantly, previous work document that taste-immune associative learning with RAPA may be utilized to induce learned pharmacological placebo responses in the immune system. Against this background, the current study aimed at investigating the potential efficacy of a taste-immune associative learning protocol with RAPA in a syngeneic GBM rat model. Following repeated pairings of a novel gustatory stimulus with injections of RAPA, learned immune-pharmacological effects could be retrieved in GBM-bearing animals when re-exposed to the gustatory stimulus together with administering 10 % amount of the initial drug dose (0.5 mg/kg). These inhibitory effects on tumor growth were accompanied by an up-regulation of central and peripheral pro-inflammatory markers, suggesting that taste-immune associative learning with RAPA promoted the development of a pro-inflammatory anti-tumor microenvironment that attenuated GBM tumor growth to an almost identical outcome as obtained after 100 % (5 mg/kg) RAPA treatment. Together, our results confirm the applicability of taste-immune associative learning with RAPA in animal disease models where mTOR overactivation is one key driver. This proof-of-concept study may also be taken as a role model for implementing learning protocols as alternative or supportive treatment strategy in clinical settings, allowing the reduction of required drug doses and side effects without losing treatment efficacy.


Subject(s)
Glioblastoma , Animals , Disease Progression , Glioblastoma/drug therapy , Glioblastoma/pathology , Rats , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Taste , Tumor Microenvironment
10.
BMC Biol ; 20(1): 170, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35907861

ABSTRACT

BACKGROUND: Neuropsychiatric disorders, such as schizophrenia (SZ) and autism spectrum disorder (ASD), are common, multi-factorial and multi-symptomatic disorders. Ample evidence implicates oxidative stress, deficient repair of oxidative DNA lesions and DNA damage in the development of these disorders. However, it remains unclear whether insufficient DNA repair and resulting DNA damage are causally connected to their aetiopathology, or if increased levels of DNA damage observed in patient tissues merely accumulate as a consequence of cellular dysfunction. To assess a potential causal role for deficient DNA repair in the development of these disorders, we behaviourally characterized a mouse model in which CaMKIIa-Cre-driven postnatal conditional knockout (KO) of the core base-excision repair (BER) protein XRCC1 leads to accumulation of unrepaired DNA damage in the forebrain. RESULTS: CaMKIIa-Cre expression caused specific deletion of XRCC1 in the dorsal dentate gyrus (DG), CA1 and CA2 and the amygdala and led to increased DNA damage therein. While motor coordination, cognition and social behaviour remained unchanged, XRCC1 KO in the forebrain caused increased anxiety-like behaviour in males, but not females, as assessed by the light-dark box and open field tests. Conversely, in females but not males, XRCC1 KO caused an increase in learned fear-related behaviour in a cued (Pavlovian) fear conditioning test and a contextual fear extinction test. The relative density of the GABA(A) receptor alpha 5 subunit (GABRA5) was reduced in the amygdala and the dorsal CA1 in XRCC1 KO females, whereas male XRCC1 KO animals exhibited a significant reduction of GABRA5 density in the CA3. Finally, assessment of fast-spiking, parvalbumin-positive (PV) GABAergic interneurons revealed a significant increase in the density of PV+ cells in the DG of male XRCC1 KO mice, while females remained unchanged. CONCLUSIONS: Our results suggest that accumulation of unrepaired DNA damage in the forebrain alters the GABAergic neurotransmitter system and causes behavioural deficits in relation to innate and learned anxiety in a sex-dependent manner. Moreover, the data uncover a previously unappreciated connection between BER deficiency, unrepaired DNA damage in the hippocampus and a sex-specific anxiety-like phenotype with implications for the aetiology and therapy of neuropsychiatric disorders.


Subject(s)
Autism Spectrum Disorder , Extinction, Psychological , Animals , Anxiety/genetics , DNA , DNA Damage , DNA Repair , Fear/physiology , Female , Male , Mice , Mice, Knockout , Phenotype , Prosencephalon
12.
Brain Behav Immun ; 99: 3-8, 2022 01.
Article in English | MEDLINE | ID: mdl-34547401

ABSTRACT

Viral infections during pregnancy are associated with increased incidence of psychiatric disorders in offspring. The pathological outcomes of viral infection appear to be caused by the deleterious effects of innate immune response-associated factors on development of the fetus, which predispose the offspring to pathological conditions in adulthood. The negative impact of viral infections varies substantially between pregnancies. Here, we explored whether differential stress sensitivity underlies the high heterogeneity of immune reactivity and whether this may influence the pathological consequences of maternal immune activation. Using mouse models of social dominance (Dom) and submissiveness (Sub), which possess innate features of stress resilience and vulnerability, respectively, we identified differential immune reactivity to the synthetic analogue of viral double-stranded RNA, Poly(I:C), in Sub and Dom nulliparous and pregnant females. More specifically, we found that Sub females showed an exacerbated pro- and anti-inflammatory cytokine response to Poly(I:C) as compared with Dom females. Sub offspring born to Sub mothers (stress sensitive offspring) showed enhanced locomotory response to the non-competitive NMDA antagonist, MK-801, which was potentiated by prenatal Poly(I:C) exposure. Our findings suggest that inherited stress sensitivity may lead to functional changes in glutamatergic signaling, which in turn is further exacerbated by prenatal exposure to viral-like infection. The maternal immunome seems to play a crucial role in these observed phenomena.


Subject(s)
Prenatal Exposure Delayed Effects , Animals , Behavior, Animal/physiology , Cytokines , Disease Models, Animal , Female , Mice , Poly I-C/pharmacology , Pregnancy
13.
Mol Psychiatry ; 26(11): 6756-6772, 2021 11.
Article in English | MEDLINE | ID: mdl-34002019

ABSTRACT

Antenatal psychopathology negatively affects obstetric outcomes and exerts long-term consequences on the offspring's wellbeing and mental health. However, the precise mechanisms underlying these associations remain largely unknown. Here, we present a novel model system in mice that allows for experimental investigations into the effects of antenatal depression-like psychopathology and for evaluating the influence of maternal pharmacological treatments on long-term outcomes in the offspring. This model system in based on rearing nulliparous female mice in social isolation prior to mating, leading to a depressive-like state that is initiated before and continued throughout pregnancy. Using this model, we show that the maternal depressive-like state induced by social isolation can be partially rescued by chronic treatment with the selective serotonin reuptake inhibitor, fluoxetine (FLX). Moreover, we identify numerous and partly sex-dependent behavioral and molecular abnormalities, including increased anxiety-like behavior, cognitive impairments and alterations of the amygdalar transcriptome, in offspring born to socially isolated mothers relative to offspring born to mothers that were maintained in social groups prior to conception. We also found that maternal FLX treatment was effective in preventing some of the behavioral and molecular abnormalities emerging in offspring born to socially isolated mothers. Taken together, our findings suggest that the presence of a depressive-like state during preconception and pregnancy has sex-dependent consequences on brain and behavioral functions in the offspring. At the same time, our study highlights that FLX treatment in dams with a depression-like state can prevent abnormal behavioral development in the offspring.


Subject(s)
Depression , Prenatal Exposure Delayed Effects , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Disease Models, Animal , Female , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Mice , Pregnancy , Prenatal Exposure Delayed Effects/drug therapy , Stress, Psychological/drug therapy
14.
Lab Anim (NY) ; 50(3): 69-75, 2021 03.
Article in English | MEDLINE | ID: mdl-33619409

ABSTRACT

The designer receptor exclusively activated by designer drugs (DREADD) system is one of the most widely used chemogenetic techniques to modulate the activity of cell populations in the brains of behaving animals. DREADDs are activated by acute or chronic administration of their ligand, clozapine-N-oxide (CNO). There is, however, a current lack of a non-invasive CNO administration technique that can control for drug timing and dosing without inducing substantial distress for the animals. Here, we evaluated whether the recently developed micropipette-guided drug administration (MDA) method, which has been used as a non-invasive and minimally stressful alternative to oral gavages, may be applied to administer CNO orally to activate DREADDs in a dosing- and timing-controlled manner. Unlike standard intraperitoneal injections, administration of vehicle substances via MDA did not elevate plasma levels of the major stress hormone, corticosterone, and did not attenuate exploratory activity in the open field test. At the same time, however, administration of CNO via MDA or intraperitoneally was equally efficient in activating hM3DGq-expressing neurons in the medial prefrontal cortex, as evident by time-dependent increases in mRNA levels of neuronal immediate early genes (cFos, Arc and Zif268) and cFos-immunoreactive neurons. Compared to vehicle given via MDA, oral administration of CNO via MDA was also found to potently increase locomotor activity in mice that express hM3DGq in prefrontal neurons. Taken together, our study confirms the effectiveness of CNO given orally via MDA and provides a novel method for non-stressful, yet well controllable CNO treatments in mouse DREADD systems.


Subject(s)
Clozapine , Designer Drugs , Animals , Brain , Mice , Neurons , Oxides
15.
Mol Psychiatry ; 26(3): 849-863, 2021 03.
Article in English | MEDLINE | ID: mdl-31168068

ABSTRACT

The pathophysiology of dopamine dysregulation in schizophrenia involves alterations at the ventral midbrain level. Given that inflammatory mediators such as cytokines influence the functional properties of midbrain dopamine neurons, midbrain inflammation may play a role in schizophrenia by contributing to presynaptic dopamine abnormalities. Thus, we quantified inflammatory markers in dopaminergic areas of the midbrain of people with schizophrenia and matched controls. We also measured these markers in midbrain of mice exposed to maternal immune activation (MIA) during pregnancy, an established risk factor for schizophrenia and other psychiatric disorders. We found diagnostic increases in SERPINA3, TNFα, IL1ß, IL6, and IL6ST transcripts in schizophrenia compared with controls (p < 0.02-0.001). The diagnostic differences in these immune markers were accounted for by a subgroup of schizophrenia cases (~ 45%, 13/28) showing high immune status. Consistent with the human cohort, we identified increased expression of immune markers in the midbrain of adult MIA offspring (SERPINA3, TNFα, and IL1ß mRNAs, all p ≤ 0.01), which was driven by a subset of MIA offspring (~ 40%, 13/32) with high immune status. There were no diagnostic (human cohort) or group-wise (mouse cohort) differences in cellular markers indexing the density and/or morphology of microglia or astrocytes, but an increase in the transcription of microglial and astrocytic markers in schizophrenia cases and MIA offspring with high inflammation. These data demonstrate that immune-related changes in schizophrenia extend to dopaminergic areas of the midbrain and exist in the absence of changes in microglial cell number, but with putative evidence of microglial and astrocytic activation in the high immune subgroup. MIA may be one of the contributing factors underlying persistent neuroimmune changes in the midbrain of people with schizophrenia.


Subject(s)
Prenatal Exposure Delayed Effects , Schizophrenia , Animals , Behavior, Animal , Disease Models, Animal , Female , Mesencephalon , Mice , Microglia , Pregnancy , Schizophrenia/genetics
16.
Neuropsychopharmacology ; 46(2): 404-412, 2021 01.
Article in English | MEDLINE | ID: mdl-32919409

ABSTRACT

Prenatal exposure to infectious and/or inflammatory insults is increasingly recognized to contribute to the etiology of psychiatric disorders with neurodevelopmental components. Recent research using animal models suggests that maternal immune activation (MIA) can induce transgenerational effects on brain and behavior, possibly through epigenetic mechanisms. Using a mouse model of MIA that is based on gestational treatment with the viral mimeticpoly(I:C) (= polyriboinosinic-polyribocytidilic acid), the present study explored whether the transgenerational effects of MIA are extendable to dopaminergic dysfunctions. We show that the direct descendants born to poly(I:C)-treated mothers display signs of hyperdopaminergia, as manifested by a potentiated sensitivity to the locomotor-stimulating effects of amphetamine (Amph) and increased expression of tyrosine hydroxylase (Th) in the adult ventral midbrain. In stark contrast, second- and third-generation offspring of MIA-exposed ancestors displayed blunted locomotor responses to Amph and reduced expression of Th. Furthermore, we found increased DNA methylation at the promoter region of the dopamine-specifying factor, nuclear receptor-related 1 protein (Nurr1), in the sperm of first-generation MIA offspring and in the ventral midbrain of second-generation offspring of MIA-exposed ancestors. The latter effect was further accompanied by reduced mRNA levels of Nurr1 in this brain region. Together, our results suggest that MIA has the potential to modify dopaminergic functions across multiple generations with opposite effects in the direct descendants and their progeny. The presence of altered DNA methylation in the sperm of MIA-exposed offspring highlights the possibility that epigenetic processes in the male germline play a role in the transgenerational effects of MIA.


Subject(s)
Behavior, Animal , Prenatal Exposure Delayed Effects , Animals , Disease Models, Animal , Dopamine , Female , Poly I-C , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced
17.
Mol Psychiatry ; 26(2): 396-410, 2021 02.
Article in English | MEDLINE | ID: mdl-33230204

ABSTRACT

Infectious or noninfectious maternal immune activation (MIA) is an environmental risk factor for psychiatric and neurological disorders with neurodevelopmental etiologies. Whilst there is increasing evidence for significant health consequences, the effects of MIA on the offspring appear to be variable. Here, we aimed to identify and characterize subgroups of isogenic mouse offspring exposed to identical MIA, which was induced in C57BL6/N mice by administration of the viral mimetic, poly(I:C), on gestation day 12. Cluster analysis of behavioral data obtained from a first cohort containing >150 MIA and control offspring revealed that MIA offspring could be stratified into distinct subgroups that were characterized by the presence or absence of multiple behavioral dysfunctions. The two subgroups also differed in terms of their transcriptional profiles in cortical and subcortical brain regions and brain networks of structural covariance, as measured by ex vivo structural magnetic resonance imaging (MRI). In a second, independent cohort containing 50 MIA and control offspring, we identified a subgroup of MIA offspring that displayed elevated peripheral production of innate inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, in adulthood. This subgroup also showed significant impairments in social approach behavior and sensorimotor gating, whereas MIA offspring with a low inflammatory cytokine status did not. Taken together, our results highlight the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network, and immunological profiles even under conditions of genetic homogeneity. These data have relevance for advancing our understanding of the variable neurodevelopmental effects induced by MIA and for biomarker-guided approaches in preclinical psychiatric research.


Subject(s)
Behavior, Animal , Prenatal Exposure Delayed Effects , Animals , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Pregnancy , Social Behavior
18.
Brain Behav Immun ; 88: 461-470, 2020 08.
Article in English | MEDLINE | ID: mdl-32278850

ABSTRACT

Pharmacological treatments in laboratory rodents remain a cornerstone of preclinical psychopharmacological research and drug development. There are numerous ways in which acute or chronic pharmacological treatments can be implemented, with each method having certain advantages and drawbacks. Here, we describe and validate a novel treatment method in mice, which we refer to as the micropipette-guided drug administration (MDA) procedure. This administration method is based on a sweetened condensed milk solution as a vehicle for pharmacological substances, which motivates the animals to consume vehicle and/or drug solutions voluntarily in the presence of the experimenter. In a proof-of-concept study, we show that the pharmacokinetic profiles of the atypical antipsychotic drug, risperidone, were similar whether administered via the MDA procedure or via the conventional oral gavage method. Unlike the latter, however, MDA did not induce the stress hormone, corticosterone. Furthermore, we assessed the suitability and validity of the MDA method in a mouse model of maternal immune activation, which is frequently used as a model of immune-mediated neurodevelopmental disorders. Using this model, we found that chronic treatment (>4 weeks, once per day) with risperidone via MDA led to a dose-dependent mitigation of MIA-induced social interaction deficits and amphetamine hypersensitivity. Taken together, the MDA procedure described herein represents a novel pharmacological administration method for per os treatments in mice that is easy to implement, cost effective, non-invasive, and less stressful for the animals than conventional oral gavage methods.


Subject(s)
Antipsychotic Agents , Neurodevelopmental Disorders , Pharmaceutical Preparations , Administration, Oral , Animals , Mice , Risperidone
19.
Semin Cell Dev Biol ; 97: 181-188, 2020 01.
Article in English | MEDLINE | ID: mdl-31233834

ABSTRACT

Prenatal exposure to infectious or inflammatory insults is increasingly recognized in the etiology of neuropsychiatric diseases, including schizophrenia, autism, depression and bipolar disorder. New discoveries highlight that maternal immune activation can lead to pathological effects on brain and behavior in multiple generations. This review describes the transgenerational consequences of maternal immune activation in shaping brain and behavior anomalies and disease risk across generations. We discuss potential underlying mechanisms of transmission, by which prenatal immune activation can mediate generation-spanning changes in brain development and functions and how external influences could further determine the specificity of the phenotype across generations. The identification of the underlying mechanisms appears relevant to infection-related neuropsychiatric illnesses independently of existing diagnostic classifications and may help identifying complex patterns of generation-spanning transmission beyond genetic inheritance. The herein described principles emphasize the importance of considering ancestral infectious histories in clinical research aiming at developing new preventive treatment strategies against infection-related neurodevelopmental disorders and mental illnesses.


Subject(s)
Maternal Inheritance/immunology , Female , Humans
20.
J Affect Disord ; 252: 404-412, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31003109

ABSTRACT

BACKGROUND: There is growing evidence for a role of abnormal gut-brain signaling in disorders involving altered mood and affect, including depression. Studies using vagus nerve stimulation (VNS) suggest that the disruption of vagal afferent signaling may contribute to these abnormalities. To test this hypothesis, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on affective behaviors. METHODS: SDA- and Sham-operated male rats were subjected to several tests that are commonly used in preclinical rodent models to assess the presence of anhedonic behavior, namely the novel object-induced exploration test, the novelty-suppressed eating test, and the sucrose preference test. In addition, we compared SDA and Sham rats in a social interaction test and the forced swim test to assess sociability and behavioral despair, respectively. RESULTS: Compared to Sham controls, SDA rats consistently displayed signs of anhedonic behavior in all test settings used. SDA rats also showed increased immobility and reduced swimming in the forced swim test, whereas they did not differ from Sham controls with regards to social approach behavior. LIMITATIONS: This study was conducted in male rats only. Hence, possible sex-specific effects of SDA on affective behaviors remained unexamined. CONCLUSIONS: Our findings demonstrate that hedonic behavior and behavioral despair are subject to visceral modulation through abdominal vagal afferents. These data are compatible with preclinical models and clinical trials showing beneficial effects of VNS on depression-like and affective behaviors.


Subject(s)
Affect , Afferent Pathways , Mood Disorders/therapy , Vagus Nerve Stimulation , Vagus Nerve/physiology , Abdomen/innervation , Animals , Disease Models, Animal , Male , Mood Disorders/physiopathology , Rats , Rats, Sprague-Dawley , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...