Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters











Publication year range
1.
Trends Microbiol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39242229

ABSTRACT

Virtually all multicellular organisms on Earth live in symbiotic associations with complex microbial communities: the microbiome. This ancient relationship is of fundamental importance for both the host and the microbiome. Recently, the analyses of numerous microbiomes have revealed an incredible diversity and complexity of symbionts, with different mechanisms identified as potential drivers of this diversity. However, the interplay of ecological and evolutionary forces generating these complex associations is still poorly understood. Here we explore and summarise the suite of ecological and evolutionary mechanisms identified as relevant to different aspects of microbiome complexity and diversity. We argue that microbiome assembly is a dynamic product of ecology and evolution at various spatio-temporal scales. We propose a theoretical framework to classify mechanisms and build mechanistic host-microbiome models to link them to empirical patterns. We develop a cohesive foundation for the theoretical understanding of the combined effects of ecology and evolution on the assembly of complex symbioses.

2.
Cell ; 187(19): 5195-5216, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303686

ABSTRACT

Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs. More importantly, the ubiquitous and global role of microbes means that they present new opportunities for synergistically accelerating progress toward multiple sustainability goals. By effectively managing microbial health, we can achieve solutions that address multiple sustainability targets ranging from climate and human health to food and energy production. Emerging international policy frameworks should reflect the vital importance of microorganisms in achieving a sustainable future.


Subject(s)
Sustainable Development , Humans , United Nations , Goals , Bacteria/metabolism , Global Health , Fungi/metabolism
3.
Nat Commun ; 15(1): 8205, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294150

ABSTRACT

Holobionts are highly organized assemblages of eukaryotic hosts, cellular microbial symbionts, and viruses, whose interactions and evolution involve complex biological processes. It is largely unknown which specific determinants drive similarity or individuality in genetic diversity between holobionts. Here, we combine short- and long-read sequencing and DNA-proximity-linkage technologies to investigate intraspecific diversity of the microbiomes, including host-resolved viruses, in individuals of a model marine sponge. We find strong impacts of the sponge host and the cellular hosts of viruses on strain-level organization of the holobiont, whereas substantial overlap in nucleotide diversity between holobionts suggests frequent exchanges of microbial cells and viruses at intrastrain level in the local sponge population. Immune-evasive arms races likely restricted virus-host co-evolution at the intrastrain level, generated holobiont-specific genome variations, and linked virus-host genetics through recombination. Our work shows that a decoupling of strain- and intrastrain-level interactions is a key factor in the genetic diversification of holobionts.


Subject(s)
Microbiota , Porifera , Symbiosis , Animals , Microbiota/genetics , Porifera/microbiology , Porifera/virology , Genetic Variation , Viruses/genetics , Viruses/classification , Phylogeny
4.
Environ Microbiol ; 26(9): e16690, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39228053

ABSTRACT

Sponge microbiomes are often highly diverse making it difficult to determine which lineages are important for maintaining host health and homeostasis. Characterising genomic traits associated with symbiosis can improve our knowledge of which lineages have adapted to their host and what functions they might provide. Here we examined five microbial families associated with sponges that have previously shown evidence of cophylogeny, including Endozoicomonadaceae, Nitrosopumilaceae, Spirochaetaceae, Microtrichaceae and Thermoanaerobaculaceae, to better understand the mechanisms behind their symbiosis. We compared sponge-associated genomes to genomes found in other environments and found that sponge-specific clades were enriched in genes encoding many known mechanisms for symbiont survival, such as avoiding phagocytosis and defence against foreign genetic elements. We expand on previous knowledge to show that glycosyl hydrolases with sulfatases and sulfotransferases likely form multienzyme degradation pathways to break and remodel sulfated polysaccharides and reveal an enrichment in superoxide dismutase that may prevent damage from free oxygen radicals produced by the host. Finally, we identified novel traits in sponge-associated symbionts, such as urea metabolism in Spirochaetaceae which was previously shown to be rare in the phylum Spirochaetota. These results identify putative mechanisms by which symbionts have adapted to living in association with sponges.


Subject(s)
Bacteria , Genomics , Porifera , Symbiosis , Porifera/microbiology , Animals , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Microbiota , Phylogeny , Genome, Bacterial
5.
Viruses ; 16(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39205165

ABSTRACT

Computational models of homologous protein groups are essential in sequence bioinformatics. Due to the diversity and rapid evolution of viruses, the grouping of protein sequences from virus genomes is particularly challenging. The low sequence similarities of homologous genes in viruses require specific approaches for sequence- and structure-based clustering. Furthermore, the annotation of virus genomes in public databases is not as consistent and up to date as for many cellular genomes. To tackle these problems, we have developed VOGDB, which is a database of virus orthologous groups. VOGDB is a multi-layer database that progressively groups viral genes into groups connected by increasingly remote similarity. The first layer is based on pair-wise sequence similarities, the second layer is based on the sequence profile alignments, and the third layer uses predicted protein structures to find the most remote similarity. VOGDB groups allow for more sensitive homology searches of novel genes and increase the chance of predicting annotations or inferring phylogeny. VOGD B uses all virus genomes from RefSeq and partially reannotates them. VOGDB is updated with every RefSeq release. The unique feature of VOGDB is the inclusion of both prokaryotic and eukaryotic viruses in the same clustering process, which makes it possible to explore old evolutionary relationships of the two groups. VOGDB is freely available at vogdb.org under the CC BY 4.0 license.


Subject(s)
Computational Biology , Genome, Viral , Phylogeny , Viruses , Viruses/genetics , Viruses/classification , Computational Biology/methods , Databases, Genetic , Viral Proteins/genetics , Viral Proteins/chemistry
6.
Neural Dev ; 19(1): 4, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698415

ABSTRACT

BACKGROUND: The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS: Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS: Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS: Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.


Subject(s)
Biological Evolution , Bone Morphogenetic Protein Receptors, Type I , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Body Patterning/genetics , Body Patterning/physiology , Signal Transduction/physiology
7.
Environ Microbiome ; 19(1): 5, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225668

ABSTRACT

Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.

8.
ISME Commun ; 3(1): 114, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865659

ABSTRACT

Coral cover and recruitment have decreased on reefs worldwide due to climate change-related disturbances. Achieving reliable coral larval settlement under aquaculture conditions is critical for reef restoration programmes; however, this can be challenging due to the lack of reliable and universal larval settlement cues. To investigate the role of microorganisms in coral larval settlement, we undertook a settlement choice experiment with larvae of the coral Acropora tenuis and microbial biofilms grown for different periods on the reef and in aquaria. Biofilm community composition across conditioning types and time was profiled using 16S and 18S rRNA gene sequencing. Co-occurrence networks revealed that strong larval settlement correlated with diverse biofilm communities, with specific nodes in the network facilitating connections between modules comprised of low- vs high-settlement communities. Taxa associated with high-settlement communities were identified as Myxoccales sp., Granulosicoccus sp., Alcanivoraceae sp., unassigned JTB23 sp. (Gammaproteobacteria), and Pseudovibrio denitrificans. Meanwhile, taxa closely related to Reichenbachiella agariperforans, Pleurocapsa sp., Alcanivorax sp., Sneathiella limmimaris, as well as several diatom and brown algae were associated with low settlement. Our results characterise high-settlement biofilm communities and identify transitionary taxa that may develop settlement-inducing biofilms to improve coral larval settlement in aquaculture.

9.
Sci Total Environ ; 904: 166658, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37659522

ABSTRACT

Understanding the rapid responses of marine microbiomes to environmental disturbances is paramount for supporting early assessments of harm to high-value ecosystems, such as coral reefs. Yet, management guidelines aimed at protecting aquatic life from environmental pollution remain exclusively defined for organisms at higher trophic levels. In this study, 16S rRNA gene amplicon sequencing was applied in conjunction with propidium monoazide for cell-viability assessment as a sensitive tool to determine taxon- and community-level changes in a seawater microbial community under copper (Cu) exposure. Bayesian model averaging was used to establish concentration-response relationships to evaluate the effects of copper on microbial composition, diversity, and richness for the purpose of estimating microbiome Hazard Concentration (mHCx) values. Predicted mHC5 values at which a 5 % change in microbial composition, diversity, and richness occurred were 1.05, 0.72, and 0.38 µg Cu L-1, respectively. Threshold indicator taxa analysis was applied across the copper concentrations to identify taxon-specific change points for decreasing taxa. These change points were then used to generate a Prokaryotic Sensitivity Distribution (PSD), from which mHCxdec values were derived for copper, suitable for the protection of 99, 95, 90, and 80 % of the marine microbiome. The mHC5dec guideline value of 0.61 µg Cu L-1, protective of 95 % of the marine microbial community, was lower than the equivalent Australian water quality guideline value based on eukaryotic organisms at higher trophic levels. This suggests that marine microbial communities might be more vulnerable, highlighting potential insufficiencies in their protection against copper pollution. The mHCx values proposed here provide approaches to quantitatively assess the effects of contaminants on microbial communities towards the inclusion of prokaryotes in future water quality guidelines.


Subject(s)
Anthozoa , Microbiota , Animals , Copper/toxicity , RNA, Ribosomal, 16S/genetics , Bayes Theorem , Australia
10.
Mol Ecol ; 32(20): 5645-5660, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37724851

ABSTRACT

Microbes play a critical role in the development and health of marine invertebrates, though microbial dynamics across life stages and host generations remain poorly understood in most reef species, especially in the context of climate change. Here, we use a 4-year multigenerational experiment to explore microbe-host interactions under the Intergovernmental Panel on Climate Change (IPCC)-forecast climate scenarios in the rock-boring tropical urchin Echinometra sp. A. Adult urchins (F0 ) were exposed for 18 months to increased temperature and pCO2 levels predicted for years 2050 and 2100 under RCP 8.5, a period which encompassed spawning. After rearing F1 offspring for a further 2 years, spawning was induced, and F2 larvae were raised under current day and 2100 conditions. Cross-generational climate effects were also explored in the microbiome of F1 offspring through a transplant experiment. Using 16S rRNA gene sequence analysis, we determined that each life stage and generation was associated with a distinct microbiome, with higher microbial diversity observed in juveniles compared to larval stages. Although life-stage specificity was conserved under climate conditions projected for 2050 and 2100, we observed changes in the urchin microbial community structure within life stages. Furthermore, we detected a climate-mediated parental effect when juveniles were transplanted among climate treatments, with the parental climate treatment influencing the offspring microbiome. Our findings reveal a potential for cross-generational impacts of climate change on the microbiome of a tropical invertebrate species.

11.
Environ Microbiol ; 25(12): 3207-3224, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37732569

ABSTRACT

The sponge microbiome underpins host function through provision and recycling of essential nutrients in a nutrient poor environment. Genomic data suggest that carbohydrate degradation, carbon fixation, nitrogen metabolism, sulphur metabolism and supplementation of B-vitamins are central microbial functions. However, validation beyond the genomic potential of sponge symbiont pathways is rarely explored. To evaluate metagenomic predictions, we sequenced the metagenomes and metatranscriptomes of three common coral reef sponges: Ircinia ramosa, Ircinia microconulosa and Phyllospongia foliascens. Multiple carbohydrate active enzymes were expressed by Poribacteria, Bacteroidota and Cyanobacteria symbionts, suggesting these lineages have a central role in assimilating dissolved organic matter. Expression of entire pathways for carbon fixation and multiple sulphur compound transformations were observed in all sponges. Gene expression for anaerobic nitrogen metabolism (denitrification and nitrate reduction) were more common than aerobic metabolism (nitrification), where only the I. ramosa microbiome expressed the nitrification pathway. Finally, while expression of the biosynthetic pathways for B-vitamins was common, the expression of additional transporter genes was far more limited. Overall, we highlight consistencies and disparities between metagenomic and metatranscriptomic results when inferring microbial activity, while uncovering new microbial taxa that contribute to the health of their sponge host via nutrient exchange.


Subject(s)
Cyanobacteria , Microbiota , Porifera , Animals , Phylogeny , Cyanobacteria/genetics , Microbiota/genetics , Vitamins/metabolism , Carbohydrates , Symbiosis
12.
ISME Commun ; 3(1): 53, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37311801

ABSTRACT

Oceans are rapidly warming and acidifying in the context of climate change, threatening sensitive marine biota including coral reef sponges. Ocean warming (OW) and ocean acidification (OA) can impact host health and associated microbiome, but few studies have investigated these effects, which are generally studied in isolation, on a specific component of the holobiont. Here we present a comprehensive view of the consequences of simultaneous OW and OA for the tropical sponge Stylissa flabelliformis. We found no interactive effect on the host health or microbiome. Furthermore, OA (pH 7.6 versus pH 8.0) had no impact, while OW (31.5 °C versus 28.5 °C) caused tissue necrosis, as well as dysbiosis and shifts in microbial functions in healthy tissue of necrotic sponges. Major taxonomic shifts included a complete loss of archaea, reduced proportions of Gammaproteobacteria and elevated relative abundances of Alphaproteobacteria. OW weakened sponge-microbe interactions, with a reduced capacity for nutrient exchange and phagocytosis evasion, indicating lower representations of stable symbionts. The potential for microbially-driven nitrogen and sulphur cycling was reduced, as was amino acid metabolism. Crucially, the dysbiosis annihilated the potential for ammonia detoxification, possibly leading to accumulation of toxic ammonia, nutrient imbalance, and host tissue necrosis. Putative defence against reactive oxygen species was greater at 31.5 °C, perhaps as microorganisms capable of resisting temperature-driven oxidative stress were favoured. We conclude that healthy symbiosis in S. flabelliformis is unlikely to be disrupted by future OA but will be deeply impacted by temperatures predicted for 2100 under a "business-as-usual" carbon emission scenario.

13.
ISME J ; 17(8): 1208-1223, 2023 08.
Article in English | MEDLINE | ID: mdl-37188915

ABSTRACT

Marine sponges are critical components of marine benthic fauna assemblages, where their filter-feeding and reef-building capabilities provide bentho-pelagic coupling and crucial habitat. As potentially the oldest representation of a metazoan-microbe symbiosis, they also harbor dense, diverse, and species-specific communities of microbes, which are increasingly recognized for their contributions to dissolved organic matter (DOM) processing. Recent omics-based studies of marine sponge microbiomes have proposed numerous pathways of dissolved metabolite exchange between the host and symbionts within the context of the surrounding environment, but few studies have sought to experimentally interrogate these pathways. By using a combination of metaproteogenomics and laboratory incubations coupled with isotope-based functional assays, we showed that the dominant gammaproteobacterial symbiont, 'Candidatus Taurinisymbion ianthellae', residing in the marine sponge, Ianthella basta, expresses a pathway for the import and dissimilation of taurine, a ubiquitously occurring sulfonate metabolite in marine sponges. 'Candidatus Taurinisymbion ianthellae' incorporates taurine-derived carbon and nitrogen while, at the same time, oxidizing the dissimilated sulfite into sulfate for export. Furthermore, we found that taurine-derived ammonia is exported by the symbiont for immediate oxidation by the dominant ammonia-oxidizing thaumarchaeal symbiont, 'Candidatus Nitrosospongia ianthellae'. Metaproteogenomic analyses also suggest that 'Candidatus Taurinisymbion ianthellae' imports DMSP and possesses both pathways for DMSP demethylation and cleavage, enabling it to use this compound as a carbon and sulfur source for biomass, as well as for energy conservation. These results highlight the important role of biogenic sulfur compounds in the interplay between Ianthella basta and its microbial symbionts.


Subject(s)
Porifera , Animals , Porifera/microbiology , Taurine , Ammonia , Carbon , Symbiosis , Phylogeny
14.
Syst Appl Microbiol ; 46(4): 126426, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37141831

ABSTRACT

Sponges are known to harbour an exceptional diversity of uncultured microorganisms, including members of the phylum Actinobacteriota. While members of the actinobacteriotal class Actinomycetia have been studied intensively due to their potential for secondary metabolite production, the sister class of Acidimicrobiia is often more abundant in sponges. However, the taxonomy, functions, and ecological roles of sponge-associated Acidimicrobiia are largely unknown. Here, we reconstructed and characterized 22 metagenome-assembled genomes (MAGs) of Acidimicrobiia from three sponge species. These MAGs represented six novel species, belonging to five genera, four families, and two orders, which are all uncharacterized (except the order Acidimicrobiales) and for which we propose nomenclature. These six uncultured species have either only been found in sponges and/or corals and have varying degrees of specificity to their host species. Functional gene profiling indicated that these six species shared a similar potential to non-symbiotic Acidimicrobiia with respect to amino acid biosynthesis and utilization of sulfur compounds. However, sponge-associated Acidimicrobiia differed from their non-symbiotic counterparts by relying predominantly on organic rather than inorganic sources of energy, and their predicted capacity to synthesise bioactive compounds or their precursors implicated in host defence. Additionally, the species possess the genetic capacity to degrade aromatic compounds that are frequently found in sponges. The novel Acidimicrobiia may also potentially mediate host development by modulating Hedgehog signalling and by the production of serotonin, which can affect host body contractions and digestion. These results highlight unique genomic and metabolic features of six new acidimicrobiial species that potentially support a sponge-associated lifestyle.


Subject(s)
Hedgehog Proteins , Symbiosis , Phylogeny , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , RNA, Ribosomal, 16S/genetics , Bacteria
15.
Syst Appl Microbiol ; 46(2): 126401, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36774720

ABSTRACT

Sponges harbour exceptionally diverse microbial communities, whose members are largely uncultured. The class Gammaproteobacteria often dominates the microbial communities of various sponge species, but most of its diversity remains functional and taxonomically uncharacterised. Here we reconstructed and characterised 32 metagenome-assembled genomes (MAGs) derived from three sponge species. These MAGs represent ten novel species and belong to seven orders, of which one is new. We propose nomenclature for all these taxa. These new species comprise sponge-specific bacteria with varying levels of host specificity. Functional gene profiling highlights significant differences in metabolic capabilities across the ten species, though each also often exhibited a large degree of metabolic diversity involving various nitrogen- and sulfur-based compounds. The genomic features of the ten species suggest they have evolved to form symbiotic interaction with their hosts or are well-adapted to survive within the sponge environment. These Gammaproteobacteria are proposed to scavenge substrates from the host environment, including metabolites or cellular components of the sponge. Their diverse metabolic capabilities may allow for efficient cycling of organic matter in the sponge environment, potentially to the benefit of the host and other symbionts.


Subject(s)
Bacteria , Microbiota , Phylogeny , RNA, Ribosomal, 16S/genetics , Metagenome , Sulfur Compounds/metabolism
16.
Environ Microbiol ; 25(3): 646-660, 2023 03.
Article in English | MEDLINE | ID: mdl-36480164

ABSTRACT

Many marine sponges host highly diverse microbiomes that contribute to various aspects of host health. Although the putative function of individual groups of sponge symbionts has been increasingly described, the extreme diversity has generally precluded in-depth characterization of entire microbiomes, including identification of syntrophic partnerships. The Indo-Pacific sponge Ianthella basta is emerging as a model organism for symbiosis research, hosting only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium and a range of other low abundance or transitory taxa. Here, we retrieved metagenome assembled genomes (MAGs) representing >90% of I. basta's microbial community, facilitating the metabolic reconstruction of the sponge's near complete microbiome. Through this analysis, we identified metabolic complementarity between microbes, including vitamin sharing, described the importance of low abundance symbionts, and characterized a novel microbe-host attachment mechanism in the Alphaproteobacterium. We further identified putative viral sequences, highlighting the role viruses can play in maintaining symbioses in I. basta through the horizontal transfer of eukaryotic-like proteins, and complemented this data with metaproteomics to identify active metabolic pathways in bacteria, archaea, and viruses. This data provide the framework to adopt I. basta as a model organism for studying host-microbe interactions and provide a basis for in-depth physiological experiments.


Subject(s)
Microbiota , Porifera , Animals , Porifera/microbiology , Phylogeny , Archaea/metabolism , Symbiosis/physiology
17.
Sci Adv ; 8(38): eabq0304, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36149959

ABSTRACT

The metabolic capabilities of animals have been derived from well-studied model organisms and are generally considered to be well understood. In animals, cysteine is an important amino acid thought to be exclusively synthesized through the transsulfuration pathway. Corals of the genus Acropora have lost cystathionine ß-synthase, a key enzyme of the transsulfuration pathway, and it was proposed that Acropora relies on the symbiosis with dinoflagellates of the family Symbiodiniaceae for the acquisition of cysteine. Here, we identify the existence of an alternative pathway for cysteine biosynthesis in animals through the analysis of the genome of the coral Acropora loripes. We demonstrate that these coral proteins are functional and synthesize cysteine in vivo, exhibiting previously unrecognized metabolic capabilities of animals. This pathway is also present in most animals but absent in mammals, arthropods, and nematodes, precisely the groups where most of the animal model organisms belong to, highlighting the risks of generalizing findings from model organisms.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Anthozoa/genetics , Coral Reefs , Cystathionine beta-Synthase/genetics , Cysteine/genetics , Dinoflagellida/genetics , Genome , Mammals/genetics , Symbiosis/genetics
18.
Microbiome ; 10(1): 22, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35105377

ABSTRACT

BACKGROUND: Sponges are ancient sessile metazoans, which form with their associated microbial symbionts a complex functional unit called a holobiont. Sponges are a rich source of chemical diversity; however, there is limited knowledge of which holobiont members produce certain metabolites and how they may contribute to chemical interactions. To address this issue, we applied non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) to either whole sponge tissue or fractionated microbial cells from six different, co-occurring sponge species. RESULTS: Several metabolites were commonly found or enriched in whole sponge tissue, supporting the notion that sponge cells produce them. These include 2-methylbutyryl-carnitine, hexanoyl-carnitine and various carbohydrates, which may be potential food sources for microorganisms, as well as the antagonistic compounds hymenialdisine and eicosatrienoic acid methyl ester. Metabolites that were mostly observed or enriched in microbial cells include the antioxidant didodecyl 3,3'-thiodipropionate, the antagonistic compounds docosatetraenoic acid, and immune-suppressor phenylethylamide. This suggests that these compounds are mainly produced by the microbial members in the sponge holobiont, and are potentially either involved in inter-microbial competitions or in defenses against intruding organisms. CONCLUSIONS: This study shows how different chemical functionality is compartmentalized between sponge hosts and their microbial symbionts and provides new insights into how chemical interactions underpin the function of sponge holobionts. Video abstract.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Chromatography, Liquid
19.
ISME Commun ; 2(1): 90, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-37938734

ABSTRACT

Most marine sponge species harbour distinct communities of microorganisms which contribute to various aspects of their host's health and physiology. In addition to their key roles in nutrient transformations and chemical defence, these symbiotic microbes can shape sponge phenotype by mediating important developmental stages and influencing the environmental tolerance of the host. However, the characterisation of each microbial taxon throughout a sponge's life cycle remains challenging, with several sponge species hosting up to 3000 distinct microbial species. Ianthella basta, an abundant broadcast spawning species in the Indo-Pacific, is an emerging model for sponge symbiosis research as it harbours only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium. Here, we successfully spawned Ianthella basta, characterised its mode of reproduction, and used 16S rRNA gene amplicon sequencing, fluorescence in situ hybridisation, and transmission electron microscopy to characterise the microbial community throughout its life cycle. We confirmed I. basta as being gonochoric and showed that the three dominant symbionts, which together make up >90% of the microbiome according to 16S rRNA gene abundance, are vertically transmitted from mother to offspring by a unique method involving encapsulation in the peri-oocytic space, suggesting an obligate relationship between these microbes and their host.

20.
FEMS Microbes ; 3: xtac002, 2022.
Article in English | MEDLINE | ID: mdl-37332502

ABSTRACT

Current methods to characterize microbial communities generally employ sequencing of the 16S rRNA gene (<500 bp) with high accuracy (∼99%) but limited phylogenetic resolution. However, long-read sequencing now allows for the profiling of near-full-length ribosomal operons (16S-ITS-23S rRNA genes) on platforms such as the Oxford Nanopore MinION. Here, we describe an rRNA operon database with >300 ,000 entries, representing >10 ,000 prokaryotic species and ∼ 150, 000 strains. Additionally, BLAST parameters were identified for strain-level resolution using in silico mutated, mock rRNA operon sequences (70-95% identity) from four bacterial phyla and two members of the Euryarchaeota, mimicking MinION reads. MegaBLAST settings were determined that required <3 s per read on a Mac Mini with strain-level resolution for sequences with >84% identity. These settings were tested on rRNA operon libraries from the human respiratory tract, farm/forest soils and marine sponges ( n = 1, 322, 818 reads for all sample sets). Most rRNA operon reads in this data set yielded best BLAST hits (95 ± 8%). However, only 38-82% of library reads were compatible with strain-level resolution, reflecting the dominance of human/biomedical-associated prokaryotic entries in the database. Since the MinION and the Mac Mini are both portable, this study demonstrates the possibility of rapid strain-level microbiome analysis in the field.

SELECTION OF CITATIONS
SEARCH DETAIL