Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36758226

ABSTRACT

Tin fluoride (SnF2) is an indispensable additive for high-efficiency Pb-Sn perovskite solar cells (PSCs). However, the spatial distribution of SnF2 in the perovskite absorber is seldom investigated while essential for a comprehensive understanding of the exact role of the SnF2 additive. Herein, we revealed the spatial distribution of the SnF2 additive and made structure-optoelectronic properties-flexible photovoltaic performance correlation. We observed the chemical transformation of SnF2 to a fluorinated oxy-phase on the Pb-Sn perovskite film surface due to its rapid oxidation. In addition, at the buried perovskite interface, we detected and visualized the accumulation of F- ions. We found that the photoluminescence quantum yield of Pb-Sn perovskite reached the highest value with 10 mol % SnF2 in the precursor solution. When integrating the optimized absorber in flexible devices, we obtained the flexible Pb-Sn perovskite narrow bandgap (1.24 eV) solar cells with an efficiency of 18.5% and demonstrated 23.1% efficient flexible four-terminal all-perovskite tandem cells.

2.
Science ; 377(6613): 1406-1412, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36074820

ABSTRACT

Colloidal lead halide perovskite nanocrystals are of interest as photoluminescent quantum dots (QDs) whose properties depend on the size and shape. They are normally synthesized on subsecond time scales through hard-to-control ionic metathesis reactions. We report a room-temperature synthesis of monodisperse, isolable, spheroidal APbBr3 QDs ("A" indicates cesium, formamidinium, and methylammonium) that are size tunable from 3 to >13 nanometers. The kinetics of both nucleation and growth are temporally separated and substantially slowed down by the intricate equilibrium between the precursor (PbBr2) and the A[PbBr3] solute, with the latter serving as a monomer. QDs of all these compositions exhibit up to four excitonic transitions in their linear absorption spectra, and we demonstrate that the size-dependent confinement energy for all transitions is independent of the A-site cation.

3.
Nanotechnology ; 32(2): 025502, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-32932247

ABSTRACT

In this work the possibility of synthesizing in situ silver nanoparticles (AgNPs) on graphene oxide (GO) surfaces without commonly used additional reducing or alkalizing agents or increased temperature was investigated. Using diverse microscopic (atomic force microscopy, transmission electron microscopy) and spectroscopic methods, it was proved that very small AgNPs were formed on GO by simple incubation for 2 h in a mixture of GO dispersion and AgNO3. The prepared nanomaterial (GO_Ag) was also assessed using electrochemical methods, and it exhibited electrochemical behavior similar to the GO_Ag nanomaterial prepared with a help of citric acid as a reducing agent. Furthermore, it was found that (i) the electrochemical reduction of the GO_Ag on the electrode surface decreased the voltammetric response even though this step increased the surface conductivity and (ii) GO_Ag can be employed for the sensing of chlorides with a detection limit of 79 µM and a linear range of up to 10 mM. It could also provide an electrochemical response toward the chloroacetanilide herbicide metazachlor. Hence, the reducing capabilities of GO were proved to be applicable for in situ synthesis of metal nanoparticles with the highest possible simplification, and the as-prepared nanomaterials could be employed for fabrication of different electrochemical sensors.

SELECTION OF CITATIONS
SEARCH DETAIL