Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Cell Signal ; 109: 110763, 2023 09.
Article in English | MEDLINE | ID: mdl-37315752

ABSTRACT

Reelin and its receptor, ApoER2, play important roles in prenatal brain development and postnatally in synaptic plasticity, learning, and memory. Previous reports suggest that reelin's central fragment binds to ApoER2 and receptor clustering is involved in subsequent intracellular signaling. However, limitations of currently available assays have not established cellular evidence of ApoER2 clustering upon binding of the central reelin fragment. In the present study, we developed a novel, cell-based assay of ApoER2 dimerization using a "split-luciferase" approach. Specifically, cells were co-transfected with one recombinant ApoER2 receptor fused to the N-terminus of luciferase and one ApoER2 receptor fused to the C-terminus of luciferase. Using this assay, we directly observed basal ApoER2 dimerization/clustering in transfected HEK293T cells and, significantly, an increase in ApoER2 clustering in response to that central fragment of reelin. Furthermore, the central fragment of reelin activated intracellular signal transduction of ApoER2, indicated by increased levels of phosphorylation of Dab1, ERK1/2, and Akt in primary cortical neurons. Functionally, we were able to demonstrate that injection of the central fragment of reelin rescued phenotypic deficits observed in the heterozygous reeler mouse. These data are the first to test the hypothesis that the central fragment of reelin contributes to facilitating the reelin intracellular signaling pathway through receptor clustering.


Subject(s)
Extracellular Matrix Proteins , Serine Endopeptidases , Mice , Animals , Humans , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Extracellular Matrix Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , HEK293 Cells , Nerve Tissue Proteins/metabolism , Signal Transduction/physiology , Disease Models, Animal , Luciferases/metabolism , Cognition , Receptors, LDL/metabolism
2.
Eur J Neurosci ; 57(10): 1657-1670, 2023 05.
Article in English | MEDLINE | ID: mdl-36945758

ABSTRACT

Reelin, a large extracellular glycoprotein, plays a critical role in prenatal brain development and postnatally in synaptic plasticity, learning and memory. Dysregulation of Reelin signalling has been implicated in several neuropsychiatric disorders including schizophrenia, autism, depression and Alzheimer's disease. Previous studies have demonstrated that Reelin's central fragment, R3456, binds to ApoER2, inducing ApoER2 clustering and subsequent intracellular signalling. We previously reported the development of a novel luciferase complementation assay, which we used to demonstrate that R3456 can lead to ApoER2 receptor dimerization. Using this same assay, we explored various smaller fragments and combinations from R3456, and we identified a construct of repeats 3 and 6 (R36), which could still elicit equivalent receptor dimerization. The purpose of this study was to test R36 for biological effects in vitro and in vivo. We show that R36 was capable of initiating intracellular signalling in primary neuronal cultures. In addition, we demonstrate that a single intracerebroventricular injection of R36 protein into a model of Reelin deficiency, the heterozygous reeler mice, can significantly improve cognition. These data support a role for the new construct R36 to enhance the Reelin pathway, and the future possibility of exploring gene therapy approaches with R36 in diseases characterized by reduced levels of Reelin.


Subject(s)
Cell Adhesion Molecules, Neuronal , Extracellular Matrix Proteins , Mice , Animals , Extracellular Matrix Proteins/genetics , Mice, Neurologic Mutants , Cell Adhesion Molecules, Neuronal/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Nerve Tissue Proteins/metabolism , Carrier Proteins
3.
Exp Neurobiol ; 32(1): 42-55, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36919335

ABSTRACT

Amyloid precursor protein (APP) plays an important role in the pathogenesis of Alzheimer's disease (AD), but the normal function of APP at synapses is poorly understood. We and others have found that APP interacts with Reelin and that each protein is individually important for dendritic spine formation, which is associated with learning and memory, in vitro. However, whether Reelin acts through APP to modulate dendritic spine formation or synaptic function remains unknown. In the present study, we found that Reelin treatment significantly increased dendritic spine density and PSD-95 puncta number in primary hippocampal neurons. An examination of the molecular mechanisms by which Reelin regulates dendritic spinogenesis revealed that Reelin enhanced hippocampal dendritic spine formation in a Ras/ERK/CREB signaling-dependent manner. Interestingly, Reelin did not increase dendritic spine number in primary hippocampal neurons when APP expression was reduced or in vivo in APP knockout (KO) mice. Taken together, our data are the first to demonstrate that Reelin acts cooperatively with APP to modulate dendritic spine formation and suggest that normal APP function is critical for Reelin-mediated dendritic spinogenesis at synapses.

4.
Clin EEG Neurosci ; 54(2): 203-212, 2023 Mar.
Article in English | MEDLINE | ID: mdl-33203220

ABSTRACT

The goal of these studies was to use quantitative (q)EEG techniques on data from children with Angelman syndrome (AS) using spectral power analysis, and to evaluate this as a potential biomarker and quantitative method to evaluate therapeutics. Although characteristic patterns are evident in visual inspection, using qEEG techniques has the potential to provide quantitative evidence of treatment efficacy. We first assessed spectral power from baseline EEG recordings collected from children with AS compared to age-matched neurotypical controls, which corroborated the previously reported finding of increased total power driven by elevated delta power in children with AS. We then retrospectively analyzed data collected during a clinical trial evaluating the safety and tolerability of minocycline (3 mg/kg/d) to compare pretreatment recordings from children with AS (4-12 years of age) to EEG activity at the end of treatment and following washout for EEG spectral power and epileptiform events. At baseline and during minocycline treatment, the AS subjects demonstrated increased delta power; however, following washout from minocycline treatment the AS subjects had significantly reduced EEG spectral power and epileptiform activity. Our findings support the use of qEEG analysis in evaluating AS and suggest that this technique may be useful to evaluate therapeutic efficacy in AS. Normalizing EEG power in AS therefore may become an important metric in screening therapeutics to gauge overall efficacy. As therapeutics transition from preclinical to clinical studies, it is vital to establish outcome measures that can quantitatively evaluate putative treatments for AS and neurological disorders with distinctive EEG patterns.


Subject(s)
Angelman Syndrome , Child , Humans , Angelman Syndrome/diagnosis , Angelman Syndrome/drug therapy , Electroencephalography , Minocycline/therapeutic use , Retrospective Studies , Treatment Outcome
5.
Exp Neurol ; 357: 114170, 2022 11.
Article in English | MEDLINE | ID: mdl-35863501

ABSTRACT

Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is characterized by autistic behaviors, childhood seizures, and deficits in learning and memory. FXS has a loss of function of the FMR1 gene that leads to a lack of Fragile X Mental Retardation Protein (FMRP) expression. FMRP is critical for synaptic plasticity, spatial learning, and memory. Reelin is a large extracellular glycoprotein essential for synaptic plasticity and numerous neurodevelopmental processes. Reduction in Reelin signaling is implicated as a contributing factor in disease etiology in several neurological disorders, including schizophrenia, and autism. However, the role of Reelin in FXS is poorly understood. We demonstrate a reduction in Reelin in Fmr1 knock-out (KO) mice, suggesting that a loss of Reelin activity may contribute to FXS. We demonstrate here that Reelin signaling enhancement via a single intracerebroventricular injection of the Reelin central fragment into Fmr1 KO mice can profoundly rescue cognitive deficits in hidden platform water maze and fear conditioning, as well as hyperactivity during the open field. Improvements in behavior were associated with rescued levels of post synaptic marker in Fmr1 KO mice when compared to controls. These data suggest that increasing Reelin signaling in FXS could offer a novel therapeutic for improving cognition in FXS.


Subject(s)
Fragile X Syndrome , Animals , Cognition , Dietary Supplements , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/complications , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Mice , Mice, Knockout
6.
Mol Cell Neurosci ; 120: 103724, 2022 05.
Article in English | MEDLINE | ID: mdl-35367589

ABSTRACT

We recently generated a novel Angelman syndrome (AS) rat model with a complete Ube3a gene deletion, that recapitulates the loss of UBE3A protein and shows cognitive and EEG deficits. We also recently published the identification of extracellular UBE3A protein within the brain using microdialysis. Here we explored the effects of supplementation of exogenous UBE3A protein to hippocampal slices and intrahippocampal injection of AS rats. We report that the AS rat model demonstrates deficits in hippocampal long-term potentiation (LTP) which can be recovered with the application of exogenous UBE3A protein. Furthermore, injection of recombinant UBE3A protein into the hippocampus of the AS rat can rescue the associative learning and memory deficits seen in the fear conditioning task. These data suggest that extracellular UBE3A protein may play a role in synaptic function, LTP induction and hippocampal-dependent memory formation.


Subject(s)
Angelman Syndrome , Angelman Syndrome/drug therapy , Angelman Syndrome/genetics , Angelman Syndrome/metabolism , Animals , Dietary Supplements , Disease Models, Animal , Hippocampus/metabolism , Long-Term Potentiation , Rats , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
eNeuro ; 8(2)2021.
Article in English | MEDLINE | ID: mdl-33531368

ABSTRACT

Angelman syndrome (AS) is a neurodevelopmental disorder with unique behavioral phenotypes, seizures, and distinctive electroencephalographic (EEG) patterns. Recent studies identified motor, social communication, and learning and memory deficits in a CRISPR engineered rat model with a complete maternal deletion of the Ube3a gene. It is unknown whether this model recapitulates other aspects of the clinical disorder. We report here the effect of Ube3a maternal deletion in the rat on epileptiform activity, seizure threshold, and quantitative EEG. Using video-synchronized EEG (vEEG) monitoring, we assessed spectral power and epileptiform activity early postnatally through adulthood. While EEG power was similar to wild-type (WT) at 1.5 weeks postnatally, at all other ages analyzed, our findings were similar to the AS phenotype in mice and humans with significantly increased δ power. Analysis of epileptiform activity in juvenile and adult rats showed increased time spent in epileptiform activity in AS compared with WT rats. We evaluated seizure threshold using pentylenetetrazol (PTZ), audiogenic stimulus, and hyperthermia to provoke febrile seizures (FSs). Behavioral seizure scoring following PTZ induction revealed no difference in seizure threshold in AS rats, however behavioral recovery from the PTZ-induced seizure was longer in the adult group with significantly increased hippocampal epileptiform activity during this phase. When exposed to hyperthermia, AS rat pups showed a significantly lower temperature threshold to first seizure than WT. Our findings highlight an age-dependence for the EEG and epileptiform phenotypes in a preclinical model of AS, and support the use of quantitative EEG and increased δ power as a potential biomarker of AS.


Subject(s)
Angelman Syndrome , Angelman Syndrome/genetics , Animals , Electroencephalography , Gene Deletion , Mice , Phenotype , Rats , Seizures/genetics , Ubiquitin-Protein Ligases/genetics
8.
Autism Res ; 14(4): 645-655, 2021 04.
Article in English | MEDLINE | ID: mdl-33474832

ABSTRACT

Disruptions to the maternally inherited allele UBE3A, encoding for an E3 ubiquitin ligase, leads to the manifestation of Angelman Syndrome (AS). While this disorder is rare, the symptoms are severe and lifelong including but not limited to: intractable seizures, abnormal EEG's, ataxic gait, lack of speech, and most notably an abnormally happy demeanor with easily provoked laughter. Currently, little is known about the neurophysiological underpinnings of UBE3A leading to such globally severe phenotypes. Utilizing the newest AS rat model, comprised of a full UBE3A deletion, we aimed to elucidate novel mechanistic actions and potential therapeutic targets. This report demonstrates for the first time that catalytically active UBE3A protein is detectable within cerebrospinal fluid (CSF) of wild type rats but distinctly absent in AS rat CSF. Microdialysis within the rat hippocampus also showed that UBE3A protein is located in the interstitial fluid of wild type rat brains but absent in AS animals. This protein maintains catalytic activity and appears to be regulated in a dynamic activity-dependent manner. LAY SUMMARY: Angelman syndrome (AS) is a rare genetic disorder caused by the loss of the UBE3A gene within the central nervous system. Although we have identified the gene responsible for AS, we still have a long way to go to fully understand its function in vivo. Here we report that UBE3A is present within normal cerebrospinal fluid (CSF) but distinctly absent in AS CSF. Furthermore, we demonstrate that UBE3A is secreted and that this may occur in a dynamic activity-dependent fashion. Extracellular UBE3A maintained its ubiquitinating activity, thus suggesting that UBE3A may have a novel role outside of neurons. Autism Res 2021, 14: 645-655. © 2021 International Society for Autism Research and Wiley Periodicals LLC.


Subject(s)
Angelman Syndrome , Autism Spectrum Disorder , Angelman Syndrome/genetics , Animals , Extracellular Space , Hippocampus , Neuronal Plasticity , Rats , Ubiquitin-Protein Ligases/genetics
9.
Autism Res ; 13(3): 397-409, 2020 03.
Article in English | MEDLINE | ID: mdl-31961493

ABSTRACT

Angelman syndrome (AS) is a rare genetic disorder characterized by severe intellectual disability, seizures, lack of speech, and ataxia. The gene responsible for AS was identified as Ube3a and it encodes for E6AP, an E3 ubiquitin ligase. Currently, there is very little known about E6AP's mechanism of action in vivo or how the lack of this protein in neurons may contribute to the AS phenotype. Elucidating the mechanistic action of E6AP would enhance our understanding of AS and drive current research into new avenues that could lead to novel therapeutic approaches that target E6AP's various functions. To facilitate the study of AS, we have generated a novel rat model in which we deleted the rat Ube3a gene using CRISPR. The AS rat phenotypically mirrors human AS with loss of Ube3a expression in the brain and deficits in motor coordination as well as learning and memory. This model offers a new avenue for the study of AS. Autism Res 2020, 13: 397-409. © 2020 International Society for Autism Research,Wiley Periodicals, Inc. LAY SUMMARY: Angelman syndrome (AS) is a rare genetic disorder characterized by severe intellectual disability, seizures, difficulty speaking, and ataxia. The gene responsible for AS was identified as UBE3A, yet very little is known about its function in vivo or how the lack of this protein in neurons may contribute to the AS phenotype. To facilitate the study of AS, we have generated a novel rat model in which we deleted the rat Ube3a gene using CRISPR. The AS rat mirrors human AS with loss of Ube3a expression in the brain and deficits in motor coordination as well as learning and memory. This model offers a new avenue for the study of AS.


Subject(s)
Angelman Syndrome/genetics , Angelman Syndrome/physiopathology , Gene Deletion , Ubiquitin-Protein Ligases/genetics , Animals , Brain/physiopathology , Disease Models, Animal , Humans , Memory , Phenotype , Rats , Rats, Sprague-Dawley
10.
Trials ; 21(1): 60, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31918761

ABSTRACT

BACKGROUND: Ketogenic and low-glycemic-index diets are effective in treating drug-resistant seizures in children with Angelman syndrome. Cognition, mobility, sleep, and gastrointestinal health are intrinsically linked to seizure activity and overall quality of life. Ketogenic and low-glycemic diets restrict carbohydrate consumption and stabilize blood glucose levels. The ketogenic diet induces ketosis, a metabolic state where ketone bodies are preferentially used for fuel. The use of exogenous ketones in promoting ketosis in Angelman syndrome has not been previously studied. The study formulation evaluated herein contains the exogenous ketone beta-hydroxybutyrate to rapidly shift the body towards ketosis, resulting in enhanced metabolic efficiency. METHODS/DESIGN: This is a 16-week, randomized, double-blind, placebo-controlled, crossover study to assess the safety and tolerability of a nutritional formula containing exogenous ketones. It also examines the potential for exogenous ketones to improve the patient's nutritional status which can impact the physiologic, symptomatic, and health outcome liabilities of living with Angelman syndrome. DISCUSSION: This manuscript outlines the rationale for a study designed to be the first to provide data on nutritional approaches for patients with Angelman syndrome using exogenous ketones. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT03644693. Registered on 23 August 2018. Last updated on 23 August 2018.


Subject(s)
Angelman Syndrome/diet therapy , Diet, Ketogenic , Ketones/administration & dosage , Randomized Controlled Trials as Topic , 3-Hydroxybutyric Acid/administration & dosage , Angelman Syndrome/metabolism , Cross-Over Studies , Diet, Carbohydrate-Restricted , Double-Blind Method , Glycemic Index , Humans , Nutritional Status
11.
Alzheimers Res Ther ; 11(1): 58, 2019 06 29.
Article in English | MEDLINE | ID: mdl-31253191

ABSTRACT

BACKGROUND: Tau stabilizes microtubules; however, in Alzheimer's disease (AD) and tauopathies, tau becomes hyperphosphorylated, aggregates, and results in neuronal death. Our group recently uncovered a unique interaction between polyamine metabolism and tau fate. Polyamines exert an array of physiological effects that support neuronal function and cognitive processing. Specific stimuli can elicit a polyamine stress response (PSR), resulting in altered central polyamine homeostasis. Evidence suggests that elevations in polyamines following a short-term stressor are beneficial; however, persistent stress and subsequent PSR activation may lead to maladaptive polyamine dysregulation, which is observed in AD, and may contribute to neuropathology and disease progression. METHODS: Male and female mice harboring tau P301L mutation (rTg4510) were examined for a tau-induced central polyamine stress response (tau-PSR). The direct effect of tau-PSR byproducts on tau fibrillization and oligomerization were measured using a thioflavin T assay and a N2a split superfolder GFP-Tau (N2a-ssGT) cell line, respectively. To therapeutically target the tau-PSR, we bilaterally injected caspase 3-cleaved tau truncated at aspartate 421 (AAV9 Tau ΔD421) into the hippocampus and cortex of spermidine/spermine-N1-acetyltransferase (SSAT), a key regulator of the tau-PSR, knock out (SSAT-/-), and wild type littermates, and the effects on tau neuropathology, polyamine dysregulation, and behavior were measured. Lastly, cellular models were employed to further examine how SSAT repression impacted tau biology. RESULTS: Tau induced a unique tau-PSR signature in rTg4510 mice, notably in the accumulation of acetylated spermidine. In vitro, higher-order polyamines prevented tau fibrillization but acetylated spermidine failed to mimic this effect and even promoted fibrillization and oligomerization. AAV9 Tau ΔD421 also elicited a unique tau-PSR in vivo, and targeted disruption of SSAT prevented the accumulation of acetylated polyamines and impacted several tau phospho-epitopes. Interestingly, SSAT knockout mice presented with altered behavior in the rotarod task, the elevated plus maze, and marble burying task, thus highlighting the impact of polyamine homeostasis within the brain. CONCLUSION: These data represent a novel paradigm linking tau pathology and polyamine dysfunction and that targeting specific arms within the polyamine pathway may serve as new targets to mitigate certain components of the tau phenotype.


Subject(s)
Acetyltransferases/metabolism , Polyamines/metabolism , Stress, Physiological , Tauopathies/enzymology , Acetyltransferases/genetics , Animals , Female , Hippocampus/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Protein Aggregation, Pathological/metabolism , tau Proteins/metabolism
12.
eNeuro ; 6(1)2019.
Article in English | MEDLINE | ID: mdl-30963102

ABSTRACT

Increased expression of the FK506-binding protein 5 (FKBP5) gene has been associated with a number of diseases, but most prominently in connection to psychiatric illnesses. Many of these psychiatric disorders present with dementia and other cognitive deficits, but a direct connection between these issues and alterations in FKBP5 remains unclear. We generated a novel transgenic mouse to selectively overexpress FKBP5, which encodes the FKBP51 protein, in the corticolimbic system, which had no overt effects on gross body weight, motor ability, or general anxiety. Instead, we found that overexpression of FKBP51 impaired long-term depression (LTD) as well as spatial reversal learning and memory, suggesting a role in glutamate receptor regulation. Indeed, FKBP51 altered the association of heat-shock protein 90 (Hsp90) with AMPA receptors, which was accompanied by an accelerated rate of AMPA recycling. In this way, the chaperone system is critical in triage decisions for AMPA receptor trafficking. Imbalance in the chaperone system may manifest in impairments in both inhibitory learning and cognitive function. These findings uncover an unexpected and essential mechanism for learning and memory that is controlled by the psychiatric risk factor FKBP5.


Subject(s)
Cognition/physiology , Cognitive Dysfunction/metabolism , Receptors, AMPA/metabolism , Spatial Learning/physiology , Tacrolimus Binding Proteins/biosynthesis , Animals , Cognitive Dysfunction/pathology , Female , Humans , Long-Term Synaptic Depression/physiology , Male , Mice , Mice, 129 Strain , Mice, Transgenic , Protein Transport/physiology
13.
Geroscience ; 41(1): 77-87, 2019 02.
Article in English | MEDLINE | ID: mdl-30739297

ABSTRACT

The incidence of neurodegenerative disorders and cognitive impairment is increasing. Rising prevalence of age-related medical conditions is associated with a dramatic economic burden; therefore, developing strategies to manage these health concerns is of great public health interest. Nutritionally based interventions have shown promise in treatment of these age-associated conditions. Astaxanthin is a carotenoid with reputed neuroprotective properties in the context of disease and injury, while emerging evidence suggests that astaxanthin may also have additional biological activities relating to neurogenesis and synaptic plasticity. Here, we investigate the potential for astaxanthin to modulate cognitive function and neural plasticity in young and aged mice. We show that feeding astaxanthin to aged mice for 1 month improves performance on several hippocampal-dependent cognitive tasks and increases long-term potentiation. However, we did not observe an alteration in neurogenesis, nor did we observe a change in microglial-associated IBA1 immunostaining. This demonstrates the potential for astaxanthin to modulate neural plasticity and cognitive function in aging.


Subject(s)
Aging/drug effects , Cognition/drug effects , Dietary Supplements , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Aging/pathology , Animals , Behavior, Animal/drug effects , Cognitive Dysfunction/diet therapy , Hippocampus/drug effects , Hippocampus/physiology , Inflammation/diet therapy , Long-Term Potentiation/drug effects , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/physiology , Neurodegenerative Diseases/diet therapy , Neurogenesis/drug effects , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Xanthophylls/administration & dosage , Xanthophylls/pharmacology , Xanthophylls/therapeutic use
14.
J Appl Res Intellect Disabil ; 31(6): 1219-1224, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29737626

ABSTRACT

BACKGROUND: Angelman syndrome (AS) leads to clinical manifestations that include intellectual impairments, developmental delay and poor motor function. Initiatives to develop therapeutics implie an urgent need to identify methods that accurately measure the motor abilities. METHODS: Six children with AS (6 to 9 years old) walked on an instrumented walkway to get spatiotemporal parameters (STPs) and center of pressure (CoP). These outcomes were compared to typically developing children (TD): 44 TD 6 to 9 years old and 20 TD 4 to 5 years old. RESULTS: Analysis revealed differences in all STPs and gait variability index when compared to TD individuals. When AS participants were compared to younger TD individuals, except step length, STPs were different. Analysis of the CoP pathway revealed a less consistent and efficient pathway in AS. CONCLUSIONS: We could delineate the functional difference between children with AS and TD children. The variability of STP and the CoP were the most valuable components in gait to be considered in AS.


Subject(s)
Angelman Syndrome/physiopathology , Gait/physiology , Postural Balance/physiology , Biomechanical Phenomena , Child , Child, Preschool , Female , Humans , Male , Pilot Projects
15.
Am J Med Genet A ; 176(5): 1099-1107, 2018 05.
Article in English | MEDLINE | ID: mdl-28944563

ABSTRACT

Treatment for Angelman syndrome (AS) is currently limited to symptomatic interventions. A mouse model of AS has reduced calcium/calmodulin-dependent kinase II activity due to excessive phosphorylation of specific threonine residues, leading to diminished long-term potentiation. In a rat model of Parkinson disease, levodopa reduced phosphorylation of various proteins, including calcium/calmodulin-dependent kinase II. Further studies demonstrated that AS mice treated with levodopa performed better on rotarod testing than untreated AS mice. We conducted a multi-center double-blind randomized placebo-controlled 1-year trial of levodopa / carbidopa with either 10 or 15 mg/kg/day of levodopa in children with AS. The outcome of this intervention was assessed using either the Bayley Scales of Infant Development or the Mullen Scales of Early Learning, as well as the Vineland Adaptive Behavior Scales, and the Aberrant Behavior Checklist. Of the 78 participants enrolled, 67 participants received study medication (33 on levodopa, 34 on placebo), and 55 participants (29 on levodopa, 26 on placebo) completed the 1-year study. There were no clinically or statistically significant changes in any of the outcome measures over a 1-year period comparing the levodopa and placebo groups. The number of adverse events reported, including the more serious adverse events, was similar in both groups, but none were related to treatment with levodopa. Our data demonstrate that levodopa is well-tolerated by children with AS. However, in the doses used in this study, it failed to improve their neurodevelopment or behavioral outcome.


Subject(s)
Angelman Syndrome/drug therapy , Levodopa/therapeutic use , Angelman Syndrome/diagnosis , Angelman Syndrome/physiopathology , Angelman Syndrome/psychology , Animals , Biomarkers , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Disease Models, Animal , Humans , Levodopa/administration & dosage , Long-Term Potentiation , Mice , Neuropsychological Tests , Treatment Outcome
16.
J Appl Res Intellect Disabil ; 31(1): e49-e58, 2018 Jan.
Article in English | MEDLINE | ID: mdl-27990716

ABSTRACT

BACKGROUND: Angelman syndrome is a rare disorder in which most individuals do not develop speech. Testing of communication ability using traditional neuropsychological measures reveals a performance level at or near the floor of the instrument resulting in an inability to detect change when experimental therapeutics are applied. METHODS: Nine individuals, with molecularly confirmed AS, ranging in age from 34 to 126 months, and a single healthy control child (age 16 months) were audio and video-recorded while interacting with a licensed speech-language pathologist in an attempt to elicit vocalization and non-verbal communication. Thirty-minute audio recordings were transcribed and categorized per the Stark Assessment of Early Vocal Development-Revised and a phonetic inventory was created. Using video recordings, gestures were classified by function, either behavioral regulation or social interaction and further categorized as deictic or representational (i.e., behavioral regulation) and joint attention or shared engagement (i.e., social interaction). RESULTS: The range of vocalizations produced by the children with AS was characteristic of children between 0-6 months and none of the children with AS used advanced forms of vocalizations. The mean frequency of reflexive vocalizations, control of phonation and expansion far exceeded the number of uses of canonical syllables, consistant with the characteristics of children around 12 months of age. Most vocalizations were either laughter or isolated vowels, only three children with AS produced consonant-vowel combinations. Children with AS tended to use central and low vowels with few producing high vowels, suggesting the presence of childhood apraxia of speech. CONCLUSION: Our results show the utilization of video-recorded behavioral observations provides a feasible and reliable alternative for quantification of communication ability in this patient population and may be employed during future clinical studies of potential therapeutics.


Subject(s)
Angelman Syndrome/psychology , Communication , Speech/physiology , Child , Child, Preschool , Female , Gestures , Humans , Infant , Male
17.
Sci Rep ; 7(1): 8451, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28814801

ABSTRACT

Angelman syndrome (AS) is a genetic neurodevelopmental disorder, most commonly caused by deletion or mutation of the maternal allele of the UBE3A gene, with behavioral phenotypes and seizures as key features. Currently no treatment is available, and therapeutics are often ineffective in controlling AS-associated seizures. Previous publications using the Ube3a maternal deletion model have shown behavioral and seizure susceptibility phenotypes, however findings have been variable and merit characterization of electroencephalographic (EEG) activity. In this study, we extend previous studies comparing the effect of genetic background on the AS phenotype by investigating the behavioral profile, EEG activity, and seizure threshold. AS C57BL/6J mice displayed robust behavioral impairments, spontaneous EEG polyspikes, and increased cortical and hippocampal power primarily driven by delta and theta frequencies. AS 129 mice performed poorly on wire hang and contextual fear conditioning and exhibited a lower seizure threshold and altered spectral power. AS F1 hybrid mice (C57BL/6J × 129) showed milder behavioral impairments, infrequent EEG polyspikes, and fewer spectral power alterations. These findings indicate the effect of common genetic backgrounds on the Ube3a maternal deletion behavioral, EEG, and seizure threshold phenotypes. Our results will inform future studies on the optimal strain for evaluating therapeutics with different AS-like phenotypes.


Subject(s)
Angelman Syndrome/metabolism , Disease Models, Animal , Seizures/metabolism , Ubiquitin-Protein Ligases/deficiency , Angelman Syndrome/genetics , Angelman Syndrome/physiopathology , Animals , Electroencephalography , Fear/physiology , Female , Male , Maze Learning/physiology , Memory/physiology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/physiology , Phenotype , Seizures/genetics , Seizures/physiopathology , Species Specificity , Ubiquitin-Protein Ligases/genetics
18.
Neuropharmacology ; 116: 142-150, 2017 04.
Article in English | MEDLINE | ID: mdl-27986596

ABSTRACT

Angelman syndrome (AS) is a rare neurogenetic disorder characterized by severe developmental delay, motor impairments, and epilepsy. GABAergic dysfunction is believed to contribute to many of the phenotypic deficits seen in AS. We hypothesized that restoration of inhibitory tone mediated by extrasynaptic GABAA receptors could provide therapeutic benefit. Here, we report that ganaxolone, a synthetic neurosteroid that acts as a positive allosteric modulator of synaptic and extrasynaptic GABAA receptors, was anxiolytic, anticonvulsant, and improved motor deficits in the Ube3a-deficient mouse model of AS when administered by implanted mini-pump for 3 days or 4 weeks. Treatment for 4 weeks also led to recovery of spatial working memory and hippocampal synaptic plasticity deficits. This study demonstrates that ganaxolone ameliorates many of the behavioral abnormalities in the adult AS mouse, and tolerance did not occur to the therapeutic effects of the drug. The results support clinical studies to investigate ganaxolone as a symptomatic treatment for AS.


Subject(s)
Angelman Syndrome/drug therapy , Anticonvulsants/pharmacology , Pregnanolone/analogs & derivatives , Seizures/drug therapy , Angelman Syndrome/physiopathology , Angelman Syndrome/psychology , Animals , Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Anxiety/physiopathology , Disease Models, Animal , Female , Hippocampus/drug effects , Hippocampus/physiopathology , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Mice, Knockout , Motor Activity/drug effects , Motor Activity/physiology , Pentylenetetrazole , Pregnanolone/pharmacology , Receptors, GABA-A/metabolism , Seizures/physiopathology , Seizures/psychology , Spatial Memory/drug effects , Spatial Memory/physiology , Tissue Culture Techniques , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics
19.
Neurobiol Dis ; 96: 38-46, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27546058

ABSTRACT

Angelman syndrome (AS) is a rare genetic and neurological disorder presenting with seizures, developmental delay, ataxia, and lack of speech. Previous studies have indicated that oxidative stress-dependent metabolic dysfunction may underlie the phenotypic deficits reported in the AS mouse model. While the ketogenic diet (KD) has been used to protect against oxidative stress and has successfully treated refractory epilepsy in AS case studies, issues arise due to its strict adherence requirements, in addition to selective eating habits and weight issues reported in patients with AS. We hypothesized that ketone ester supplementation would mimic the KD as an anticonvulsant and improve the behavioral and synaptic plasticity deficits in vivo. AS mice were supplemented R,S-1,3-butanediol acetoacetate diester (KE) ad libitum for eight weeks. KE administration improved motor coordination, learning and memory, and synaptic plasticity in AS mice. The KE was also anticonvulsant and altered brain amino acid metabolism in AS treated animals. Our findings suggest that KE supplementation produces sustained ketosis and ameliorates many phenotypes in the AS mouse model, and should be investigated further for future clinical use.


Subject(s)
Angelman Syndrome/complications , Esters/pharmacology , Esters/therapeutic use , Exploratory Behavior/drug effects , Hippocampus/pathology , Neuronal Plasticity/drug effects , Seizures , Acoustic Stimulation/adverse effects , Action Potentials/drug effects , Angelman Syndrome/blood , Animals , Conditioning, Psychological/drug effects , Disease Models, Animal , Esters/blood , Excitatory Amino Acid Agonists/toxicity , Excitatory Postsynaptic Potentials/drug effects , Female , Kainic Acid/toxicity , Ketones/blood , Ketones/pharmacology , Ketones/therapeutic use , Male , Maze Learning/drug effects , Mice , Mice, Transgenic , Psychomotor Performance/drug effects , Seizures/drug therapy , Seizures/etiology , Seizures/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
20.
Front Cell Neurosci ; 10: 75, 2016.
Article in English | MEDLINE | ID: mdl-27065802

ABSTRACT

Reelin is a neurodevelopmental protein important in adult synaptic plasticity and learning and memory. Recent evidence points to the importance for Reelin proteolysis in normal signaling and in cognitive function. Support for the dysfunction of Reelin proteolysis in neurodegeneration and cognitive dysfunction comes from postmortem analysis of Alzheimer's diseases (AD) tissues including cerebral spinal fluid (CSF), showing that levels of Reelin fragments are altered in AD compared to control. Potential key proteases involved in Reelin proteolysis have recently been defined, identifying processes that could be altered in neurodegeneration. Introduction of full-length Reelin and its proteolytic fragments into several mouse models of neurodegeneration and neuropsychiatric disorders quickly promote learning and memory. These findings support a role for Reelin in learning and memory and suggest further understanding of these processes are important to harness the potential of this pathway in treating cognitive symptoms in neuropsychiatric and neurodegenerative diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...