Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1233280, 2023.
Article in English | MEDLINE | ID: mdl-37692437

ABSTRACT

An analysis of 82 non-synonymous Pisum fulvum accessions for sequence variation in a fragment of the STAYGREEN (SGR) locus revealed 57 alleles, most of which differed in indel structure. Eight additional P. fulvum accessions, each supposedly synonymous with a different accession of the initial group, were also analyzed. In every case the paired synonymous accessions possessed the same SGR sequence but varied slightly for a 6-trait morphological phenotype, indicating that SGR sequence is a much more reliable indicator of accession identity than is a morphological characterization. SGR sequence analysis confirmed our previous finding that P. fulvum accessions separate into two allele groups. This division was not supported by results of previous studies that were based on sequences distributed across the entire genome, suggesting that the division may have been produced by selection at a nearby locus and that the SGR phylogeny may not be good indicator of overall relationships within the species. One P. fulvum accession, PI 595941 (=JI1796), displayed an SGR sequence outside the variation typical of the species. Instead, its allele resembled alleles limited to a set of Pisum sativum landraces from the Middle East, suggesting hybridization between ancestors of PI 595941 and some primitive form of domesticated P. sativum. With one exception from the extreme northwest corner of Israel, P. fulvum accessions collected north of latitude 35.5° N were fixed for alleles from group A. These northern accessions also displayed greatly reduced SGR sequence diversity compared to group A accessions collected from other regions, suggesting that the northern populations may represent recent extensions of the range of the species. Group B accessions were distributed from Lake Tiberias south and were generally sympatric with the southern group A accessions. Although group B accessions occupied a smaller area than group A, the SGR sequence diversity in this group (28 alleles in 33 accessions) exceeded that for group A.

2.
Genome ; 50(9): 871-5, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17893728

ABSTRACT

Pea (Pisum sativum L.) has a genome of about 4 Gb that appears to share conserved synteny with model legumes having genomes of 0.2-0.4 Gb despite extensive intergenic expansion. Pea plant inventory (PI) accession 269818 has been used to introgress genetic diversity into the cultivated germplasm pool. The aim here was to develop pea bacterial artificial chromosome (BAC) libraries that would enable the isolation of genes involved in plant disease resistance or control of economically important traits. The BAC libraries encompassed about 3.2 haploid genome equivalents consisting of partially HindIII-digested DNA fragments with a mean size of 105 kb that were inserted in 1 of 2 vectors. The low-copy oriT-based T-DNA vector (pCLD04541) library contained 55 680 clones. The single-copy oriS-based vector (pIndigoBAC-5) library contained 65 280 clones. Colony hybridization of a universal chloroplast probe indicated that about 1% of clones in the libraries were of chloroplast origin. The presence of about 0.1% empty vectors was inferred by white/blue colony plate counts. The usefulness of the libraries was tested by 2 replicated methods. First, high-density filters were probed with low copy number sequences. Second, BAC plate-pool DNA was used successfully to PCR amplify 7 of 9 published pea resistance gene analogs (RGAs) and several other low copy number pea sequences. Individual BAC clones encoding specific sequences were identified. Therefore, the HindIII BAC libraries of pea, based on germplasm accession PI 269818, will be useful for the isolation of genes underlying disease resistance and other economically important traits.


Subject(s)
Chromosomes, Artificial, Bacterial/chemistry , Gene Library , Genes, Plant , Pisum sativum/genetics , Genetic Markers , Pisum sativum/classification
3.
Prikl Biokhim Mikrobiol ; 43(3): 265-71, 2007.
Article in Russian | MEDLINE | ID: mdl-17619572

ABSTRACT

The review sums up the long experience of the authors and other researchers in studying the genetic system of garden pea (Pisum sativum L.), which controls sthe development of nitrogen-fixing symbiosis and arbuscular mycorrhiza. A justified phenotypic classification of pea mutants is presented. Progress in identifying and cloning symbiotic genes is adequately reflected. The feasibility of using double inoculation as a means of increasing the plant productivity is demonstrated, in which the potential of a tripartite symbiotic system (pea plants-root nodule bacteria-arbuscular mycorrhiza) is mobilized.


Subject(s)
Bacteria/genetics , Mycorrhizae/genetics , Nitrogen Fixation/genetics , Pisum sativum/genetics , Root Nodules, Plant/genetics , Symbiosis/genetics , Mutation , Root Nodules, Plant/microbiology
4.
J Appl Genet ; 42(4): 425-33, 2001.
Article in English | MEDLINE | ID: mdl-14564019

ABSTRACT

It was earlier suggested that the lupine taxa identified as Lupinus graecus Boissier et Spruner, L. jugoslavicus Kazim. et Now., and L. vavilovi Majss. et Atab. should be considered one species, L. albus, with two botanical varieties: var. albus (bitter cultivated form) and var. graecus (wild ancestor). We investigated this possibility by examining the genetic distance between L. albus, L. termis and L. vavilovi with RAPD markers. The genetic distances between taxa were found to be very small (<0.1), similar to results for other conspecific taxa. In addition, only three of 146 amplified fragments examined were unique to a specific taxon (L. vavilovi). We conclude that the three taxa studied belong to one species and can be divided into two varieties, as suggested earlier.

5.
Genome ; 43(2): 333-40, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10791822

ABSTRACT

Genetic maps of Vitis (2n = 38) have been constructed from an interspecific hybrid population of 58 seedlings of the cross 'Horizon' ('Seyval' x 'Schuyler') x Illinois 547-1 (V. cinerea B9 x V. rupestris B38). The maps were initially constructed based on 277 RAPD (random amplified polymorphic DNA) markers using a double-pseudotestcross strategy. Subsequently, 25 microsatellites, 4 CAPS (cleaved amplified polymorphic sequence), and 12 AFLP (amplified fragment length polymorphism) markers were added to the maps. Another 120 markers, mostly those segregating 3:1, were also assigned but not positioned on the linkage groups in the two maps. The 'Horizon' map consisted of 153 markers covering 1199 cM, with an average map distance of 7.6 cM between markers. The Illinois 547-1 map had 179 markers covering 1470 cM, with an average map distance of 8.1 cM. There were 20 linkage groups in each map, one more than the basic number of chromosomes in grapes. Ten linkage groups in each map were identified as homologous using 16 microsatellite and 2 CAPS markers polymorphic in both parents. A single locus controlling sex in grapes mapped close to a microsatellite marker. These maps provide enough coverage of the genome for QTL (quantitative trait loci) analysis and as a starting point for positional gene cloning in grapes.


Subject(s)
Chromosome Mapping , Genetic Markers , Sex Determination Processes , Genes, Plant , Genetic Linkage , Microsatellite Repeats , Models, Genetic , Random Amplified Polymorphic DNA Technique , Recombination, Genetic , Rosales/genetics
7.
Theor Appl Genet ; 93(1-2): 222-7, 1996 Jul.
Article in English | MEDLINE | ID: mdl-24162221

ABSTRACT

A simple genetic basis for the red/yellow skincolor polymorphism in apple was verified using DNA markers. Bulked segregant analysis identified one 10-base oligomer that generated different fragments in each of the bulks. After testing the primer in four populations, two fragments were found to be associated with red skin color and another two fragments associated with yellow skin color. Three of the fragments (1160, 1180, and 1230 bp) were partly sequenced and found to share high sequence homology, suggesting these were generated from the same locus. A pair of universal primers were designed to amplify the fragments. In the 'Rome Beauty' x 'White Angel' population, two fragments were associated with red skin color; one fragment designated as A(1) (1160 bp) was from 'Rome Beauty' and another fragment (A(2), 1180 bp) was from 'White Angel'. Progeny possessing both fragments, or either one, had red fruit. Both parents displayed an alternate fragment, a(1) (1230 bp), associated with yellowskinned fruit. In three other crosses tested, only fragment A(1) co-segregated with red skin color; two fragments, a(1) and a(2) (1230 bp and 1320 bp), were associated with yellow skin color. Our results are consistent with the hypothesis that the red/yellow dimorphism is controlled by a monogenic system with the presence of the red anthocyanin pigmentation being dominant. There was no indication that other modifier genes could reverse the effect of the locus (R f ) linked to the markers. Examination of amplification products in 56 apple cultivars and advanced breeding selections demonstrated that the universal primers could be used to correctly predict fruit skin color in most cases.

8.
Theor Appl Genet ; 93(3): 431-9, 1996 Aug.
Article in English | MEDLINE | ID: mdl-24162302

ABSTRACT

Quantitative trait loci (QTLs) affecting seed weight in pea (Pisum sativum L.) were mapped using two populations, a field-grown F2 progeny of a cross between two cultivated types ('Primo' and 'OSU442-15') and glasshouse-grown single-seed-descent recombinant inbred lines (RILs) from a wide cross between a P. sativum ssp. sativum line ('Slow') and a P. sativum ssp. humile accession ('JI1794'). Linkage maps for these crosses consisted of 199 and 235 markers, respectively. QTLs for seed weight in the 'Primo' x 'OSU442-15' cross were identified by interval mapping, bulked segregant analysis, and selective genotyping. Four QTLs were identified in this cross, demonstrating linkage to four intervals on three linkage groups. QTLs for seed weight in the 'JI1794' x 'Slow' cross were identified by single-marker analyses. Linkage were demonstrated to four intervals on three linkage groups plus three unlinked loci. In the two crosses, only one common genomic region was identified as containing seed-weight QTLs. Seed-weight QTLs mapped to the same region of linkage group III in both crosses. Conserved linkage relationships were demonstrated for pea, mungbean (Vigna radiata L.), and cowpea (V. unguiculata L.) genomic regions containing seed-weight QTLs by mapping RFLP loci from the Vigna maps in the 'Primo' x 'OSU442-15' and 'JI1794' x 'Slow' crosses.

9.
Plant Mol Biol ; 29(6): 1111-25, 1995 Dec.
Article in English | MEDLINE | ID: mdl-8616212

ABSTRACT

Here, we describe two nearly identical expressed genes for cytosolic glutamine synthetase (GS3A and GS3B) in Pisum sativum L. RFLP mapping data indicates that the GS3A and GS3B genes are separate loci located on different chromosomes. DNA sequencing of the GS3A and GS3B genes revealed that the coding regions are 99% identical with only simple nucleotide substitutions resulting in three amino acid differences. Surprisingly, the non-coding regions (5' non-coding leader, the 11 introns, and 3' non-coding tail) all showed a high degree of identity (96%). In these non-coding regions, 25% of the observed differences between the GS3A and GS3B genes were deletions or duplications. The single difference in the 3' non-coding regions of the GS3A and GS3B genes was a 25 bp duplication of an AU-rich element in the GS3B gene. As the GS3B mRNA accumulates to lower levels than the GS3A gene, we tested whether this sequence which resembles an mRNA instability determinant functioned as such in the context of the GS mRNA. Using the GS3B 3' tail as part of a chimeric gene in transgenic plants, we showed that this AU-rich sequence has little effect on transgene mRNA levels. To determine whether the GS3A/GS3B genes represent a recent duplication, we examined GS3-like genes in genomic DNA of ancient relatives of P. sativum. We observed that several members of the Viceae each contain two genomic DNA fragments homologous to the GS3B gene, suggesting that this is an ancient duplication event. Gene conversion has been invoked as a possible mechanism for maintaining the high level of nucleotide similarity found between GS3A and GS3B genes. Possible evolutionary reasons for the maintenance of these 'twin' GS genes in pea, and the general duplication of genes for cytosolic GS in all plant species are discussed.


Subject(s)
Biological Evolution , Glutamate-Ammonia Ligase/genetics , Multigene Family , Pisum sativum/enzymology , Pisum sativum/genetics , Base Sequence , Chromosome Mapping , Conserved Sequence , Cytosol/enzymology , Exons , Gene Expression , Genes, Plant , Glutamate-Ammonia Ligase/biosynthesis , Introns , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Sequence Homology, Nucleic Acid
10.
Genome ; 38(4): 786-94, 1995 Aug.
Article in English | MEDLINE | ID: mdl-7672609

ABSTRACT

Genetic linkage maps of Vitis (2n = 38) have been constructed from a single interspecific hybrid grape population (60 seedlings) of 'Cayuga White' X 'Aurore'. The maps were primarily based on 422 RAPD markers but also included 16 RFLP and isozyme markers. These maps had an average distance of 6.1 cM between markers and were developed using a double-pseudotestcross strategy. The 'Cayuga White' map had 214 markers covering 1196 cM and that of 'Aurore' spanned over 1477 cM with 225 markers. The 'Cayuga White' map consisted of 20 linkage groups, whereas 22 linkage groups comprised the 'Aurore' map. The number of groups reduced to 19, as in some instances two or more groups from one parent showed homology with a single group from the other parent on the basis of markers heterozygous in both parents. Each linkage group ranged in size from 14 to 135 cM in 'Aurore' and from 14 to 124 cM in 'Cayuga White'. These maps provide enough coverage of the genome to allow quantitative trait locus analysis and map-based gene cloning.


Subject(s)
Fruit/genetics , Genetic Linkage , Genetic Markers , Base Sequence , Crosses, Genetic , DNA Primers , Heterozygote , Homozygote , Molecular Sequence Data , Polymerase Chain Reaction
11.
Theor Appl Genet ; 91(3): 465-70, 1995 Aug.
Article in English | MEDLINE | ID: mdl-24169836

ABSTRACT

A simple, PCR-based method has been developed for the rapid genotyping of large numbers of samples. The method involves a alkaline extraction of DNA from plant tissue using a slight modification of the procedure of Wang et al. (Nucleic Acids Res 21:4153-4154, 1993). Template DNA is amplified using allelespecific associated primers (ASAPs) which, at stringent annealing temperatures, generate only a single DNA fragment and only in those individuals possessing the appropriate allele. This approach eliminates the need to separate amplified DNA fragments by electrophoresis. Instead, samples processing the appropriate allele are identified by direct staining of DNA with ethidium bromide. Total technician time required for extraction, amplification and detection of 96 samples is about 4 h, and this time requirement can be reduced by automation. Excluding labor, cost per sample is less than $0.40. The method is tested using the codominant isozyme marker, alcohol dehydrogenase (Adh-1) gene in pea (Pisum sativum), and applied to the screening of photoperiod genes in common bean (Phaseolus vulgaris L.).

12.
Plant Mol Biol ; 26(2): 643-55, 1994 Oct.
Article in English | MEDLINE | ID: mdl-7948919

ABSTRACT

The zinc-binding long-chain alcohol dehydrogenases from plants and animals exhibit a considerable level of amino acid sequence conservation. While the functional importance of many of the conserved residues is known, the role of others has not yet been determined. We have identified a naturally occurring Adh-1 allele in the legume Phaseolus acutifolius with several unusual characteristics. Individuals homozygous for this allele, Adh-1 CN, possess a single isozyme starch gel electrophoretic pattern suggestive of a null allele, and exhibit ADH enzyme activity levels ca. 60% lower than the standard wild-type Adh-1F line. Interestingly, analysis of Adh-1CN homozygotes on an alternative gel system indicates that Adh-1CN does encode a polypeptide capable of forming functional homo- and heterodimers. However, the levels of ADH activity displayed by these isozymes are far lower than those observed for the corresponding wild type ADH-1F isozymes. Dialysis experiments indicate that isozymes containing the ADH-1CN polypeptide are inactivated by slightly acidic conditions, which may explain the apparent null phenotype on starch gels. Elevated temperatures cause a similar loss of enzyme activity. The deduced amino acid sequences of ADH-1CN and ADH-1F were obtained from their corresponding cDNA clones, and the only significant difference detected between the two is a single amino acid replacement substitution. Residue 144 is occupied by phenylalanine in the ADH-1F polypeptide, whereas serine occupies this position in the ADH-1CN polypeptide. The proximity of residue 144 to the catalytic zinc in the substrate-binding pocket, coupled with the fact that it is integral to a defined hydrophobic core of the ADH polypeptide, may explain the observed disruptive effect that the serine substitution has on both the activity and stability of the ADH-1CN polypeptide. It also provides an explanation for the maintenance of phenylalanine or the structurally similar tyrosine at this residue in Zn-binding long-chain ADHs.


Subject(s)
Alcohol Dehydrogenase/chemistry , Fabaceae/enzymology , Isoenzymes/chemistry , Phenylalanine , Plants, Medicinal , Serine , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/isolation & purification , Alleles , Amino Acid Sequence , Animals , Base Sequence , Conserved Sequence , DNA Primers , DNA, Complementary/chemistry , DNA, Plant/genetics , Electrophoresis, Starch Gel , Enzyme Stability , Genes, Plant , Homozygote , Isoenzymes/genetics , Isoenzymes/isolation & purification , Macromolecular Substances , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Homology, Amino Acid
13.
J Hered ; 85(3): 179-82, 1994.
Article in English | MEDLINE | ID: mdl-8014459

ABSTRACT

A lectin gene family is located on linkage group 7 in pea. The lectin genes are arranged as a cluster, with no recombination observed within the multigene family. A lectin-like cDNA clone, pEA207, and eight DNA fragments generated by random priming also were mapped in the region of the lectin genes. None of the known pea mutants altering Rhizobium leguminosarum strain specificity map to this region of the genome, and therefore their altered specificities appear not to be directly produced by mutations in the lectin genes.


Subject(s)
Chromosome Mapping , Fabaceae/genetics , Lectins/genetics , Mutation , Plants, Medicinal , Rhizobium leguminosarum/physiology , Base Sequence , DNA Primers , Fabaceae/microbiology , Genes, Plant , Genetic Linkage , Molecular Sequence Data , Multigene Family , Plant Lectins , Species Specificity
14.
J Hered ; 85(1): 4-11, 1994.
Article in English | MEDLINE | ID: mdl-7907101

ABSTRACT

Linkage maps for two apple clones, White Angel and Rome Beauty, were constructed using isozyme and DNA polymorphisms segregating in a population produced from a Rome Beauty x White Angel cross. The linkage map for White Angel consists of 253 markers arranged in 24 linkage groups and extends over 950 cM. The Rome Beauty map contains 156 markers on 21 linkage groups. The White Angel map was taken as the standard, and we were able to identify linkage groups in Rome Beauty homologous to 13 White Angel linkage groups. The location of several genes not segregating in the Rome Beauty x White Angel population could be determined on the basis of known linkages with segregating markers. Hence, the standard map for apple now contains about 360 markers, with most linkage groups saturated at 10-15 cM. The double pseudotestcross format of the mapping population permitted the comparison of recombination frequencies in male and female parents in certain regions of the genome where appropriate markers were available. The recombination frequencies observed for the approximately 170 cM that were comparable gave no indication that a sex-related difference in recombination rate was characteristic of apple.


Subject(s)
Fruit/genetics , Genetic Linkage , Genetic Markers , Base Sequence , Crosses, Genetic , DNA Primers , Fruit/enzymology , Genes, Plant , Isoenzymes/genetics , Molecular Sequence Data , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Recombination, Genetic
15.
Theor Appl Genet ; 88(8): 1050-5, 1994 Sep.
Article in English | MEDLINE | ID: mdl-24186261

ABSTRACT

Linkage analysis was used to determine the genetic map location of er-1, a recessive gene conditioning resistance to powdery mildew, on the Pisum sativum genome. Genetic linkage was demonstrated between er-1 and linkage group 6 markers after analyzing the progeny of two crosses, an F2 population and a set of recombinant inbred lines. The classes of genetic markers surrounding er-1 include RFLP, RAPD and allozyme markers as well as the morphological marker Gty. A RAPD marker tightly linked to er-1 was identified by bulked segregant analysis. After DNA sequence characterization, specific PCR primers were designed to convert this RAPD marker into a sequence characterized amplified region (SCAR).

16.
Theor Appl Genet ; 85(5): 609-15, 1993 Jan.
Article in English | MEDLINE | ID: mdl-24195936

ABSTRACT

The location of sbm-1 on the Pisum sativum genetic map was determined by linkage analysis with eight syntenic molecular markers. Analysis of the progeny of two crosses confirmed that sbm-1 is on chromosome 6 and permitted a more detailed map of this chromosome to be constructed. The inclusion of Fed-1 and Prx-3 among the markers facilitated the comparison of our map with the classical genetic map of pea. The sbm-1 gene is most closely linked to RFLP marker GS185, being separated by a distance of about 8 cM. To determine the practical value of GS185 as a marker for sbm-1 in plant breeding programs, the GS185 hybridization pattern and virus-resistance phenotype were compared in of a collection of breeding lines and cultivars. Three GS185 hybridization patterns were discerned among the lines. A strong association was found between one of these patterns and resistance to PSbMV.

17.
Theor Appl Genet ; 85(8): 937-45, 1993 Feb.
Article in English | MEDLINE | ID: mdl-24196143

ABSTRACT

Segregating allozyme and DNA polymorphisms were used to construct a preliminary linkage map for faba bean. Two F2 populations were analyzed, the most informative of which was segregating for 66 markers. Eleven independently assorting linkage groups were identified in this population. One of the groups contained the 45s ribosomal array and could be assigned to the large metacentric chromosome I on which the nucleolar organizer region is located. This linkage group also contained two isozyme loci, Est and Tpi-p, suggesting that it may share some homology with chromosome 4 of garden pea on which three similar markers are syntenic. Additional aspects of the map and the extent of coverage of the total nuclear genome are discussed.

19.
Am J Bot ; 79(10): 1194-1199, 1992 Oct.
Article in English | MEDLINE | ID: mdl-30139136

ABSTRACT

Twenty-one independent chloroplast DNA polymorphisms were identified in Vigna unguiculata defining 19 different chloroplast DNA molecules (plastome types). Two plastome types, differing by a single character, were found among 32 accessions of cultivated cowpea (Vigna unguiculata ssp. unguiculata). Eighteen different plastome types were found among 26 accessions of wild cowpea (V. unguiculata ssp. dekindtiana). The very low level of chloroplast DNA diversity found in cultivated accessions relative to wild cowpea suggests that 1) the domesticated form was derived from a narrow selection of the wild germplasm and 2) chloroplast gene flow between wild and cultivated types has been very limited. Cladistic analysis of the cpDNA data generated a robust tree completely lacking homoplasy. Three wild accessions from Nigeria possessed a plastome type indistinguishable from one present in cultivated accessions, suggesting that Nigeria represents one center of domestication of the cowpea. The other plastome type within the cultivated germplasm was not found among wild accessions.

20.
EMBO J ; 10(10): 3073-8, 1991 Oct.
Article in English | MEDLINE | ID: mdl-1915281

ABSTRACT

Most chloroplast and mitochondrial proteins are encoded by nuclear genes that once resided in the organellar genomes. Transfer of most of these genes appears to have occurred soon after the endosymbiotic origin of organelles, and so little is known about the process. Our efforts to understand how chloroplast genes are functionally transferred to the nuclear genome have led us to discover the most recent evolutionary gene transfer yet described. The gene rpl22, encoding chloroplast ribosomal protein CL22, is present in the chloroplast genome of all plants examined except legumes, while a functional copy of rpl22 is located in the nucleus of the legume pea. The nuclear rpl22 gene has acquired two additional domains relative to its chloroplast ancestor: an exon encoding a putative N-terminal transit peptide, followed by an intron which separates this first exon from the evolutionarily conserved, chloroplast-derived portion of the gene. This gene structure suggests that the transferred region may have acquired its transit peptide by a form of exon shuffling. Surprisingly, phylogenetic analysis shows that rpl22 was transferred to the nucleus in a common ancestor of all flowering plants, at least 100 million years preceding its loss from the legume chloroplast lineage.


Subject(s)
Chloroplasts , Fabaceae/genetics , Introns , Nuclear Proteins/genetics , Plant Proteins/genetics , Plants, Medicinal , Recombination, Genetic , Amino Acid Sequence , Base Sequence , Biological Evolution , Cell Nucleus , Chloroplast Proteins , DNA/genetics , Electrophoresis, Agar Gel , Exons , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...