Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Haemost ; 122(10): 1683-1692, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35850149

ABSTRACT

BACKGROUND: Activated platelets have been implicated in the proinflammatory and prothrombotic phenotype of coronavirus disease 2019 (COVID-19). While it is increasingly recognized that lipids have important structural and signaling roles in platelets, the lipidomic landscape of platelets during infection has remained unexplored. OBJECTIVE: To investigate the platelet lipidome of patients hospitalized for COVID-19. METHODS: We performed untargeted lipidomics in platelets of 25 patients hospitalized for COVID-19 and 23 noninfectious controls with similar age and sex characteristics, and with comparable comorbidities. RESULTS: Twenty-five percent of the 1,650 annotated lipids were significantly different between the groups. The significantly altered part of the platelet lipidome mostly comprised lipids that were less abundant in patients with COVID-19 (20.4% down, 4.6% up, 75% unchanged). Platelets from COVID-19 patients showed decreased levels of membrane plasmalogens, and a distinct decrease of long-chain, unsaturated triacylglycerols. Conversely, platelets from patients with COVID-19 displayed class-wide higher abundances of bis(monoacylglycero)phosphate and its biosynthetic precursor lysophosphatidylglycerol. Levels of these classes positively correlated with ex vivo platelet reactivity-as measured by P-selectin expression after PAR1 activation-irrespective of disease state. CONCLUSION: Taken together, this investigation provides the first exploration of the profound impact of infection on the human platelet lipidome, and reveals associations between the lipid composition of platelets and their reactivity. These results warrant further lipidomic research in other infections and disease states involving platelet pathophysiology.


Subject(s)
Blood Platelets , COVID-19 , Blood Platelets/metabolism , Humans , Lipidomics , P-Selectin/metabolism , Plasmalogens/metabolism , Platelet Activation , Receptor, PAR-1/metabolism , Triglycerides/metabolism
2.
PLoS Genet ; 15(3): e1007633, 2019 03.
Article in English | MEDLINE | ID: mdl-30845140

ABSTRACT

The deregulation of metabolism is a hallmark of aging. As such, changes in the expression of metabolic genes and the profiles of amino acid levels are features associated with aging animals. We previously reported that the levels of most amino acids decline with age in Caenorhabditis elegans (C. elegans). Glycine, in contrast, substantially accumulates in aging C. elegans. In this study we show that this is coupled to a decrease in gene expression of enzymes important for glycine catabolism. We further show that supplementation of glycine significantly prolongs C. elegans lifespan, and early adulthood is important for its salutary effects. Moreover, supplementation of glycine ameliorates specific transcriptional changes that are associated with aging. Glycine feeds into the methionine cycle. We find that mutations in components of this cycle, methionine synthase (metr-1) and S-adenosylmethionine synthetase (sams-1), completely abrogate glycine-induced lifespan extension. Strikingly, the beneficial effects of glycine supplementation are conserved when we supplement with serine, which also feeds into the methionine cycle. RNA-sequencing reveals a similar transcriptional landscape in serine- and glycine-supplemented worms both demarked by widespread gene repression. Taken together, these data uncover a novel role of glycine in the deceleration of aging through its function in the methionine cycle.


Subject(s)
Caenorhabditis elegans/metabolism , Glycine/metabolism , Longevity/physiology , Methionine/metabolism , Aging/drug effects , Aging/genetics , Aging/metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Diet , Genes, Helminth , Glycine/administration & dosage , Longevity/drug effects , Longevity/genetics , Metabolic Networks and Pathways/genetics , Mutation , RNA Interference , Serine/administration & dosage , Serine/metabolism , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...