Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Genome Announc ; 5(37)2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28912323

ABSTRACT

Clinical isolates of the respiratory pathogen Bordetella pertussis in the United States have become predominantly deficient for the acellular vaccine immunogen pertactin through various independent mutations. Here, we report the complete genome sequences for four B. pertussis isolates that harbor novel deletions responsible for pertactin deficiency.

2.
mSphere ; 1(3)2016.
Article in English | MEDLINE | ID: mdl-27303739

ABSTRACT

During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural level, previously undetectable by traditional sequence analysis using short-read technologies. For the first time, we combine short- and long-read sequencing platforms with restriction optical mapping for single-contig, de novo assembly of 31 isolates to investigate two geographically and temporally independent U.S. pertussis epidemics. These complete genomes reshape our understanding of B. pertussis evolution and strengthen molecular epidemiology toward one day understanding the resurgence of pertussis.

3.
Clin Infect Dis ; 60(2): 223-7, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25301209

ABSTRACT

BACKGROUND: A recent increase in Bordetella pertussis without the pertactin protein, an acellular vaccine immunogen, has been reported in the United States. Determining whether pertactin-deficient (PRN(-)) B. pertussis is evading vaccine-induced immunity or altering the severity of illness is needed. METHODS: We retrospectively assessed for associations between pertactin production and both clinical presentation and vaccine history. Cases with isolates collected between May 2011 and February 2013 from 8 states were included. We calculated unadjusted and adjusted odds ratios (ORs) using multivariable logistic regression analysis. RESULTS: Among 753 isolates, 640 (85%) were PRN(-). The age distribution differed between cases caused by PRN(-) B. pertussis and cases caused by B. pertussis producing pertactin (PRN(+)) (P = .01). The proportion reporting individual pertussis symptoms was similar between the 2 groups, except a higher proportion of PRN(+) case-patients reported apnea (P = .005). Twenty-two case-patients were hospitalized; 6% in the PRN(+) group compared to 3% in the PRN(-) group (P = .11). Case-patients having received at least 1 pertussis vaccine dose had a higher odds of having PRN(-) B. pertussis compared with unvaccinated case-patients (adjusted OR = 2.2; 95% confidence interval [CI], 1.3-4.0). When restricted to case-patients at least 1 year of age and those age-appropriately vaccinated, the adjusted OR increased to 2.7 (95% CI, 1.2-6.1). CONCLUSIONS: The significant association between vaccination and isolate pertactin production suggests that the likelihood of having reported disease caused by PRN(-) compared with PRN(+) strains is greater in vaccinated persons. Additional studies are needed to assess whether vaccine effectiveness is diminished against PRN(-) strains.


Subject(s)
Bacterial Outer Membrane Proteins/analysis , Bacterial Outer Membrane Proteins/genetics , Bordetella pertussis/genetics , Bordetella pertussis/isolation & purification , Pertussis Vaccine/administration & dosage , Virulence Factors, Bordetella/analysis , Virulence Factors, Bordetella/genetics , Whooping Cough/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Bacterial Outer Membrane Proteins/immunology , Blotting, Western , Bordetella pertussis/immunology , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immune Evasion , Infant , Infant, Newborn , Male , Middle Aged , Polymerase Chain Reaction , Retrospective Studies , United States/epidemiology , Virulence Factors, Bordetella/immunology , Whooping Cough/immunology , Whooping Cough/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL