Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2104, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055389

ABSTRACT

Bacterial biofilms are formed on environmental surfaces and host tissues, and facilitate host colonization and antibiotic resistance by human pathogens. Bacteria often express multiple adhesive proteins (adhesins), but it is often unclear whether adhesins have specialized or redundant roles. Here, we show how the model biofilm-forming organism Vibrio cholerae uses two adhesins with overlapping but distinct functions to achieve robust adhesion to diverse surfaces. Both biofilm-specific adhesins Bap1 and RbmC function as a "double-sided tape": they share a ß-propeller domain that binds to the biofilm matrix exopolysaccharide, but have distinct environment-facing domains. Bap1 adheres to lipids and abiotic surfaces, while RbmC mainly mediates binding to host surfaces. Furthermore, both adhesins contribute to adhesion in an enteroid monolayer colonization model. We expect that similar modular domains may be utilized by other pathogens, and this line of research can potentially lead to new biofilm-removal strategies and biofilm-inspired adhesives.


Subject(s)
Vibrio cholerae , Humans , Vibrio cholerae/metabolism , Bacterial Proteins/metabolism , Biofilms , Adhesins, Bacterial , Polysaccharides/chemistry
2.
J Lipid Res ; 62: 100028, 2021.
Article in English | MEDLINE | ID: mdl-33524375

ABSTRACT

The enzyme 3ß-hydroxysterol-Δ24 reductase (DHCR24, EC 1.3.1.72) catalyzes the conversion of desmosterol to cholesterol and is obligatory for post-squalene cholesterol synthesis. Genetic loss of this enzyme results in desmosterolosis (MIM #602398), a rare disease that presents with multiple congenital anomalies, features of which overlap with subjects with the Smith-Lemli-Opitz syndrome (another post-squalene cholesterol disorder). Global knockout (KO) of Dhcr24 in mice recapitulates the biochemical phenotype, but pups die within 24 h from a lethal dermopathy, limiting its utility as a disease model. Here, we report a conditional KO mouse model (Dhcr24flx/flx) and validate it by generating a liver-specific KO (Dhcr24flx/flx,Alb-Cre). Dhcr24flx/flx,Alb-Cre mice showed normal growth and fertility, while accumulating significantly elevated levels of desmosterol in plasma and liver. Of interest, despite the loss of cholesterol synthesis in the liver, hepatic architecture, gene expression of sterol synthesis genes, and lipoprotein secretion appeared unchanged. The increased desmosterol content in bile and stool indicated a possible compensatory role of hepatobiliary secretion in maintaining sterol homeostasis. This mouse model should now allow for the study of the effects of postnatal loss of DHCR24, as well as role of tissue-specific loss of this enzyme during development and adulthood.


Subject(s)
Abnormalities, Multiple , Lipid Metabolism, Inborn Errors
3.
J Mol Cell Cardiol ; 139: 33-46, 2020 02.
Article in English | MEDLINE | ID: mdl-31972267

ABSTRACT

Cell surface glycoproteins play critical roles in maintaining cardiac structure and function in health and disease and the glycan-moiety attached to the protein is critical for proper protein folding, stability and signaling [1]. However, despite mounting evidence that glycan structures are key modulators of heart function and must be considered when developing cardiac biomarkers, we currently do not have a comprehensive view of the glycans present in the normal human heart. In the current study, we used porous graphitized carbon liquid chromatography interfaced with mass spectrometry (PGC-LC-MS) to generate glycan structure libraries for primary human heart tissue homogenate, cardiomyocytes (CM) enriched from human heart tissue, and human induced pluripotent stem cell derived CM (hiPSC-CM). Altogether, we established the first reference structure libraries of the cardiac glycome containing 265 N- and O-glycans. Comparing the N-glycome of CM enriched from primary heart tissue to that of heart tissue homogenate, the same pool of N-glycan structures was detected in each sample type but the relative signal of 21 structures significantly differed between samples, with the high mannose class increased in enriched CM. Moreover, by comparing primary CM to hiPSC-CM collected during 20-100 days of differentiation, dynamic changes in the glycan profile throughout in vitro differentiation were observed and differences between primary and hiPSC-CM were revealed. Namely, >30% of the N-glycome significantly changed across these time-points of differentiation and only 23% of the N-glycan structures were shared between hiPSC-CM and primary CM. These observations are an important complement to current genomic, transcriptomic, and proteomic profiling and reveal new considerations for the use and interpretation of hiPSC-CM models for studies of human development, disease, and drug testing. Finally, these data are expected to support future regenerative medicine efforts by informing targets for evaluating the immunogenic potential of hiPSC-CM and harnessing differences between immature, proliferative hiPSC-CM and adult primary CM.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Polysaccharides/chemistry , Artifacts , Cells, Cultured , Female , Glycomics , Glycosylation , Humans , Male , Phenotype , Polysaccharides/metabolism , Principal Component Analysis , Time Factors , Tissue Fixation
4.
Stem Cell Reports ; 12(2): 395-410, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30686762

ABSTRACT

Several protocols now support efficient differentiation of human pluripotent stem cells to cardiomyocytes (hPSC-CMs) but these still indicate line-to-line variability. As the number of studies implementing this technology expands, accurate assessment of cell identity is paramount to well-defined studies that can be replicated among laboratories. While flow cytometry is apt for routine assessment, a standardized protocol for assessing cardiomyocyte identity has not yet been established. Therefore, the current study leveraged targeted mass spectrometry to confirm the presence of troponin proteins in day 25 hPSC-CMs and systematically evaluated multiple anti-troponin antibodies and sample preparation protocols for their suitability in assessing cardiomyocyte identity. Results demonstrate challenges to interpreting data generated by published methods and inform the development of a robust protocol for routine assessment of hPSC-CMs. The data, workflow for antibody evaluation, and standardized protocol described here should benefit investigators new to this field and those with expertise in hPSC-CM differentiation.


Subject(s)
Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology , Amino Acid Sequence , Cell Differentiation/physiology , Cell Line , Flow Cytometry/methods , Humans
5.
J Am Heart Assoc ; 5(11)2016 11 07.
Article in English | MEDLINE | ID: mdl-27821400

ABSTRACT

BACKGROUND: Atherosclerosis is a chronic inflammatory disorder whose development is inversely correlated with high-density lipoprotein concentration. Current therapies involve pharmaceuticals that significantly elevate plasma high-density lipoprotein cholesterol concentrations. Our studies were conducted to investigate the effects of low-dose lipid-free apolipoprotein A-I (apoA-I) on chronic inflammation. The aims of these studies were to determine how subcutaneously injected lipid-free apoA-I reduces accumulation of lipid and immune cells within the aortic root of hypercholesterolemic mice without sustained elevations in plasma high-density lipoprotein cholesterol concentrations. METHODS AND RESULTS: Ldlr-/- and Ldlr-/- apoA-I-/- mice were fed a Western diet for a total of 12 weeks. After 6 weeks, a subset of mice from each group received subcutaneous injections of 200 µg of lipid-free human apoA-I 3 times a week, while the other subset received 200 µg of albumin, as a control. Mice treated with lipid-free apoA-I showed a decrease in cholesterol deposition and immune cell retention in the aortic root compared with albumin-treated mice, regardless of genotype. This reduction in atherosclerosis appeared to be directly related to a decrease in the number of CD131 expressing cells and the esterified cholesterol to total cholesterol content in several immune cell compartments. In addition, apoA-I treatment altered microdomain cholesterol composition that shifted CD131, the common ß subunit of the interleukin 3 receptor, from lipid raft to nonraft fractions of the plasma membrane. CONCLUSIONS: ApoA-I treatment reduced lipid and immune cell accumulation within the aortic root by systemically reducing microdomain cholesterol content in immune cells. These data suggest that lipid-free apoA-I mediates beneficial effects through attenuation of immune cell lipid raft cholesterol content, which affects numerous types of signal transduction pathways that rely on microdomain integrity for assembly and activation.


Subject(s)
Aorta/drug effects , Apolipoprotein A-I/pharmacology , Atherosclerosis/genetics , Cholesterol/metabolism , Leukocytes, Mononuclear/drug effects , Membrane Microdomains/drug effects , Animals , Aorta/immunology , Aorta/metabolism , Aorta/pathology , Apolipoprotein A-I/genetics , Atherosclerosis/immunology , Atherosclerosis/metabolism , Blotting, Western , Cholesterol Esters/metabolism , Cytokine Receptor Common beta Subunit , Diet, Western , Homeostasis , Humans , Leukocytes, Mononuclear/immunology , Lipoproteins, LDL , Membrane Microdomains/metabolism , Mice , Mice, Knockout , Microscopy, Fluorescence , Receptors, LDL/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...