Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Comp Biol ; 60(2): 288-303, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32353148

ABSTRACT

Microbiomes represent the collective bacteria, archaea, protist, fungi, and virus communities living in or on individual organisms that are typically multicellular eukaryotes. Such consortia have become recognized as having significant impacts on the development, health, and disease status of their hosts. Since understanding the mechanistic connections between an individual's genetic makeup and their complete set of traits (i.e., genome to phenome) requires consideration at different levels of biological organization, this should include interactions with, and the organization of, microbial consortia. To understand microbial consortia organization, we elucidated the genetic constituents among phenotypically similar (and hypothesized functionally-analogous) layers (i.e., top orange, second orange, pink, and green layers) in the unique laminated orange cyanobacterial-bacterial crusts endemic to Hawaii's anchialine ecosystem. High-throughput amplicon sequencing of ribosomal RNA hypervariable regions (i.e., Bacteria-specific V6 and Eukarya-biased V9) revealed microbial richness increasing by crust layer depth, with samples of a given layer more similar to different layers from the same geographic site than to their phenotypically-analogous layer from different sites. Furthermore, samples from sites on the same island were more similar to each other, regardless of which layer they originated from, than to analogous layers from another island. However, cyanobacterial and algal taxa were abundant in all surface and bottom layers, with anaerobic and chemoautotrophic taxa concentrated in the middle two layers, suggesting crust oxygenation from both above and below. Thus, the arrangement of oxygenated vs. anoxygenated niches in these orange crusts is functionally distinct relative to other laminated cyanobacterial-bacterial communities examined to date, with convergent evolution due to similar environmental conditions a likely driver for these phenotypically comparable but genetically distinct microbial consortia.


Subject(s)
Bacteria/genetics , Genotype , Microbial Consortia/genetics , Phenotype , Cyanobacteria/genetics , Hawaii
2.
Toxins (Basel) ; 11(5)2019 05 25.
Article in English | MEDLINE | ID: mdl-31130611

ABSTRACT

Species interactions are fundamental ecological forces that can have significant impacts on the evolutionary trajectories of species. Nonetheless, the contribution of predator-prey interactions to genetic and phenotypic divergence remains largely unknown. Predatory marine snails of the family Conidae exhibit specializations for different prey items and intraspecific variation in prey utilization patterns at geographic scales. Because cone snails utilize venom to capture prey and venom peptides are direct gene products, it is feasible to examine the evolution of genes associated with changes in resource utilization. Here, we compared feeding ecologies and venom duct transcriptomes of individuals from three populations of Conus miliaris, a species that exhibits geographic variation in prey utilization and dietary breadth, in order to determine the extent to which dietary differences are correlated with differences in venom composition, and if expanded niche breadth is associated with increased variation in venom composition. While populations showed little to no overlap in resource utilization, taxonomic richness of prey was greatest at Easter Island. Changes in dietary breadth were associated with differences in expression patterns and increased genetic differentiation of toxin-related genes. The Easter Island population also exhibited greater diversity of toxin-related transcripts, but did not show increased variance in expression of these transcripts. These results imply that differences in dietary breadth contribute more to the structural and regulatory differentiation of venoms than differences in diet.


Subject(s)
Conotoxins/genetics , Conus Snail/physiology , American Samoa , Animals , Conus Snail/genetics , Diet , Feeding Behavior , Guam , Polymorphism, Single Nucleotide , Polynesia , Predatory Behavior , Transcriptome
3.
Syst Biol ; 66(2): 256-282, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27664188

ABSTRACT

Phylogenomic studies have improved understanding of deep metazoan phylogeny and show promise for resolving incongruences among analyses based on limited numbers of loci. One region of the animal tree that has been especially difficult to resolve, even with phylogenomic approaches, is relationships within Lophotrochozoa (the animal clade that includes molluscs, annelids, and flatworms among others). Lack of resolution in phylogenomic analyses could be due to insufficient phylogenetic signal, limitations in taxon and/or gene sampling, or systematic error. Here, we investigated why lophotrochozoan phylogeny has been such a difficult question to answer by identifying and reducing sources of systematic error. We supplemented existing data with 32 new transcriptomes spanning the diversity of Lophotrochozoa and constructed a new set of Lophotrochozoa-specific core orthologs. Of these, 638 orthologous groups (OGs) passed strict screening for paralogy using a tree-based approach. In order to reduce possible sources of systematic error, we calculated branch-length heterogeneity, evolutionary rate, percent missing data, compositional bias, and saturation for each OG and analyzed increasingly stricter subsets of only the most stringent (best) OGs for these five variables. Principal component analysis of the values for each factor examined for each OG revealed that compositional heterogeneity and average patristic distance contributed most to the variance observed along the first principal component while branch-length heterogeneity and, to a lesser extent, saturation contributed most to the variance observed along the second. Missing data did not strongly contribute to either. Additional sensitivity analyses examined effects of removing taxa with heterogeneous branch lengths, large amounts of missing data, and compositional heterogeneity. Although our analyses do not unambiguously resolve lophotrochozoan phylogeny, we advance the field by reducing the list of viable hypotheses. Moreover, our systematic approach for dissection of phylogenomic data can be applied to explore sources of incongruence and poor support in any phylogenomic data set. [Annelida; Brachiopoda; Bryozoa; Entoprocta; Mollusca; Nemertea; Phoronida; Platyzoa; Polyzoa; Spiralia; Trochozoa.].


Subject(s)
Bryozoa/classification , Bryozoa/genetics , Classification/methods , Genome/genetics , Phylogeny , Animals
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2710-8, 2016 07.
Article in English | MEDLINE | ID: mdl-26061341

ABSTRACT

The Atyidae are caridean shrimp possessing hair-like setae on their claws and are important contributors to ecological services in tropical and temperate fresh and brackish water ecosystems. Complete mitochondrial genomes have only been reported from five of the 449 species in the family, thus limiting understanding of mitochondrial genome evolution and the phylogenetic utility of complete mitochondrial sequences in the Atyidae. Here, comparative analyses of complete mitochondrial genomes from eight genetic lineages of Halocaridina rubra, an atyid endemic to the anchialine ecosystem of the Hawaiian Archipelago, are presented. Although gene number, order, and orientation were syntenic among genomes, three regions were identified and further quantified where conservation was substantially lower: (1) high length and sequence variability in the tRNA-Lys and tRNA-Asp intergenic region; (2) a 317-bp insertion between the NAD6 and CytB genes confined to a single lineage and representing a partial duplication of CytB; and (3) the putative control region. Phylogenetic analyses utilizing complete mitochondrial sequences provided new insights into relationships among the H. rubra genetic lineages, with the topology of one clade correlating to the geologic sequence of the islands. However, deeper nodes in the phylogeny lacked bootstrap support. Overall, our results from H. rubra suggest intra-specific mitochondrial genomic diversity could be underestimated across the Metazoa since the vast majority of complete genomes are from just a single individual of a species.


Subject(s)
Decapoda/genetics , Genome, Mitochondrial/genetics , Animals , Decapoda/classification , Ecosystem , Evolution, Molecular , Hawaii , Phylogeny , RNA, Transfer/genetics , Tandem Repeat Sequences/genetics
5.
Biol Bull ; 229(2): 134-42, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26504154

ABSTRACT

Larvae in aquatic habitats often develop in environments different from those they inhabit as adults. Shrimp in the Atyidae exemplify this trend, as larvae of many species require salt or brackish water for development, while adults are freshwater-adapted. An exception within the Atyidae family is the "anchialine clade," which are euryhaline as adults and endemic to habitats with subterranean fresh and marine water influences. Although the Hawaiian anchialine atyid Halocaridina rubra is a strong osmoregulator, its larvae have never been observed in nature. Moreover, larval development in anchialine species is poorly studied. Here, reproductive trends in laboratory colonies over a 5-y period are presented from seven genetic lineages and one mixed population of H. rubra; larval survivorship under varying salinities is also discussed. The presence and number of larvae differed significantly among lineages, with the mixed population being the most prolific. Statistical differences in reproduction attributable to seasonality also were identified. Larval survivorship was lowest (12% settlement rate) at a salinity approaching fresh water and significantly higher in brackish and seawater (88% and 72%, respectively). Correlated with this finding, identifiable gills capable of ion transport did not develop until metamorphosis into juveniles. Thus, early life stages of H. rubra are apparently excluded from surface waters, which are characterized by lower and fluctuating salinities. Instead, these stages are restricted to the subterranean (where there is higher and more stable salinity) portion of Hawaii's anchialine habitats due to their inability to tolerate low salinities. Taken together, these data contribute to the understudied area of larval ecology in the anchialine ecosystem.


Subject(s)
Decapoda/growth & development , Decapoda/physiology , Animals , Decapoda/genetics , Ecosystem , Female , Fresh Water , Gills/growth & development , Hawaii , Larva/growth & development , Larva/physiology , Male , Metamorphosis, Biological , Reproduction/physiology , Salinity , Seasons , Seawater
6.
J Mol Evol ; 80(3-4): 193-208, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25758350

ABSTRACT

Cyclooxygenase (COX) enzymatically converts arachidonic acid into prostaglandin G/H in animals and has importance during pregnancy, digestion, and other physiological functions in mammals. COX genes have mainly been described from vertebrates, where gene duplications are common, but few studies have examined COX in invertebrates. Given the increasing ease in generating genomic data, as well as recent, although incomplete descriptions of potential COX sequences in Mollusca, Crustacea, and Insecta, assessing COX evolution across Metazoa is now possible. Here, we recover 40 putative COX orthologs by searching publicly available genomic resources as well as ~250 novel invertebrate transcriptomic datasets. Results suggest the common ancestor of Cnidaria and Bilateria possessed a COX homolog similar to those of vertebrates, although such homologs were not found in poriferan and ctenophore genomes. COX was found in most crustaceans and the majority of molluscs examined, but only specific taxa/lineages within Cnidaria and Annelida. For example, all octocorallians appear to have COX, while no COX homologs were found in hexacorallian datasets. Most species examined had a single homolog, although species-specific COX duplications were found in members of Annelida, Mollusca, and Cnidaria. Additionally, COX genes were not found in Hemichordata, Echinodermata, or Platyhelminthes, and the few previously described COX genes in Insecta lacked appreciable sequence homology (although structural analyses suggest these may still be functional COX enzymes). This analysis provides a benchmark for identifying COX homologs in future genomic and transcriptomic datasets, and identifies lineages for future studies of COX.


Subject(s)
Evolution, Molecular , Gene Duplication , Prostaglandin-Endoperoxide Synthases/genetics , Animals , Chordata/genetics , Crustacea/genetics , Databases, Genetic , Echinodermata/genetics , Insecta/genetics , Molecular Sequence Data , Mollusca/genetics , Phylogeny , Prostaglandin-Endoperoxide Synthases/metabolism , Sequence Alignment
7.
Mol Ecol Resour ; 15(1): 228-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25424247

ABSTRACT

This article documents the public availability of (i) transcriptome sequence data, assembly and annotation, and single nucleotide polymorphisms (SNPs) for the cone snail Conus miliaris; (ii) a set of SNP markers for two biotypes from the Culex pipiens mosquito complex; (iii) transcriptome sequence data, assembly and annotation for the mountain fly Drosophila nigrosparsa; (iv) transcriptome sequence data, assembly and annotation and SNPs for the Neotropical toads Rhinella marina and R. schneideri; and (v) partial genomic sequence assembly and annotation for 35 spiny lizard species (Genus Sceloporus).


Subject(s)
Bufonidae/genetics , Conus Snail/genetics , Culex/genetics , Drosophila/genetics , Lizards/genetics , Polymorphism, Single Nucleotide , Transcriptome , Animals , Databases, Chemical
8.
Curr Biol ; 24(23): 2827-32, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25454590

ABSTRACT

Ambulacraria, comprising Hemichordata and Echinodermata, is closely related to Chordata, making it integral to understanding chordate origins and polarizing chordate molecular and morphological characters. Unfortunately, relationships within Hemichordata and Echinodermata have remained unresolved, compromising our ability to extrapolate findings from the most closely related molecular and developmental models outside of Chordata (e.g., the acorn worms Saccoglossus kowalevskii and Ptychodera flava and the sea urchin Strongylocentrotus purpuratus). To resolve long-standing phylogenetic issues within Ambulacraria, we sequenced transcriptomes for 14 hemichordates as well as 8 echinoderms and complemented these with existing data for a total of 33 ambulacrarian operational taxonomic units (OTUs). Examination of leaf stability values revealed rhabdopleurid pterobranchs and the enteropneust Stereobalanus canadensis were unstable in placement; therefore, analyses were also run without these taxa. Analyses of 185 genes resulted in reciprocal monophyly of Enteropneusta and Pterobranchia, placed the deep-sea family Torquaratoridae within Ptychoderidae, and confirmed the position of ophiuroid brittle stars as sister to asteroid sea stars (the Asterozoa hypothesis). These results are consistent with earlier perspectives concerning plesiomorphies of Ambulacraria, including pharyngeal gill slits, a single axocoel, and paired hydrocoels and somatocoels. The resolved ambulacrarian phylogeny will help clarify the early evolution of chordate characteristics and has implications for our understanding of major fossil groups, including graptolites and somasteroideans.


Subject(s)
Chordata, Nonvertebrate/genetics , Phylogeny , Animals , Biological Evolution , Chordata/classification , Chordata/genetics , Chordata, Nonvertebrate/classification , Likelihood Functions , Transcriptome
9.
Biol Bull ; 225(1): 24-41, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24088794

ABSTRACT

Archipelagos of the Indo-West Pacific are considered to be among the richest in the world in biodiversity, and phylogeographic studies generally support either the center of origin or the center of accumulation hypothesis to explain this pattern. To differentiate between these competing hypotheses for organisms from the Indo-West Pacific anchialine ecosystem, defined as coastal bodies of mixohaline water fluctuating with the tides but having no direct oceanic connections, we investigated the genetic variation, population structure, and evolutionary history of three caridean shrimp species (Antecaridina lauensis, Halocaridinides trigonophthalma, and Metabetaeus minutus) in the Ryukyu Archipelago, Japan. We used two mitochondrial genes--cytochrome c oxidase subunit I (COI) and large ribosomal subunit (16S-rDNA)--complemented with genetic examination of available specimens from the same or closely related species from the Indian and Pacific Oceans. In the Ryukyus, each species encompassed 2-3 divergent (9.52%-19.2% COI p-distance) lineages, each having significant population structure and varying geographic distributions. Phylogenetically, the A. lauensis and M. minutus lineages in the Ryukyus were more closely related to ones from outside the archipelago than to one another. These results, when interpreted in the context of Pacific oceanographic currents and geologic history of the Ryukyus, imply multiple colonizations of the archipelago by the three species, consistent with the center of accumulation hypothesis. While this study contributes toward understanding the biodiversity, ecology, and evolution of organisms in the Ryukyus and the Indo-West Pacific, it also has potential utility in establishing conservation strategies for anchialine fauna of the Pacific Basin in general.


Subject(s)
Animal Distribution , Biodiversity , Decapoda/genetics , Genetic Variation , Animals , Decapoda/classification , Decapoda/physiology , Japan , Phylogeography , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...