Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(12): 8280-8297, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38467029

ABSTRACT

Single-site copper-based catalysts have shown remarkable activity and selectivity for a variety of reactions. However, deactivation by sintering in high-temperature reducing environments remains a challenge and often limits their use due to irreversible structural changes to the catalyst. Here, we report zeolite-based copper catalysts in which copper oxide agglomerates formed after reaction can be repeatedly redispersed back to single sites using an oxidative treatment in air at 550 °C. Under different environments, single-site copper in Cu-Zn-Y/deAlBeta undergoes dynamic changes in structure and oxidation state that can be tuned to promote the formation of key active sites while minimizing deactivation through Cu sintering. For example, single-site Cu2+ reduces to Cu1+ after catalyst pretreatment (270 °C, 101 kPa H2) and further to Cu0 nanoparticles under reaction conditions (270-350 °C, 7 kPa EtOH, 94 kPa H2) or accelerated aging (400-450 °C, 101 kPa H2). After regeneration at 550 °C in air, agglomerated CuO was dispersed back to single sites in the presence and absence of Zn and Y, which was verified by imaging, in situ spectroscopy, and catalytic rate measurements. Ab initio molecular dynamics simulations show that solvation of CuO monomers by water facilitates their transport through the zeolite pore, and condensation of the CuO monomer with a fully protonated silanol nest entraps copper and reforms the single-site structure. The capability of silanol nests to trap and stabilize copper single sites under oxidizing conditions could extend the use of single-site copper catalysts to a wider variety of reactions and allows for a simple regeneration strategy for copper single-site catalysts.

2.
ACS Sustain Chem Eng ; 8(32): 12151-12160, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-38435970

ABSTRACT

Oxymethylene dimethyl ethers (OMEs), CH3-(OCH2)n-OCH3, n = 1-5, possess attractive low-soot diesel fuel properties. Methanol is a key precursor in the production of OMEs, providing an opportunity to incorporate renewable carbon sources via gasification and methanol synthesis. The costly production of anhydrous formaldehyde in the typical process limits this option. In contrast, the direct production of OMEs via a dehydrogenative coupling (DHC) reaction, where formaldehyde is produced and consumed in a single reactor, may address this limitation. We report the gas-phase DHC reaction of methanol to dimethoxymethane (DMM), the simplest OME, with n = 1, over bifunctional metal-acid catalysts based on Cu. A Cu-zirconia-alumina (Cu/ZrAlO) catalyst achieved 40% of the DMM equilibrium-limited yield under remarkably mild conditions (200 °C, 1.7 atm). The performance of the Cu/ZrAlO catalyst was attributed to metallic Cu nanoparticles that enable dehydrogenation and a distribution of acid strengths on the ZrAlO support, which reduced the selectivity to dimethyl ether compared to a that obtained with a Cu/Al2O3 catalyst. The DMM formation rate of 6.1 h-1 compares favorably against well-studied oxidative DHC approaches over non-noble, mixed-metal oxide catalysts. The results reported here set the foundation for further development of the DHC route to OME production, rather than oxidative approaches.

SELECTION OF CITATIONS
SEARCH DETAIL