Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
JACC Heart Fail ; 11(10): 1351-1362, 2023 10.
Article in English | MEDLINE | ID: mdl-37480877

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is a common comorbidity in patients with heart failure with preserved ejection fraction (HFpEF) and in heart failure with mildly reduced ejection fraction (HFmrEF). OBJECTIVES: This study sought to describe AF burden and its clinical impact among individuals with HFpEF and HFmrEF who participated in a randomized clinical trial of atrial shunt therapy (REDUCE LAP-HF II [A Study to Evaluate the Corvia Medical, Inc IASD System II to Reduce Elevated Left Atrial Pressure in Patients with Heart Failure]) and to evaluate the effect of atrial shunt therapy on AF burden. METHODS: Study investigators characterized AF burden among patients in the REDUCE LAP-HF II trial by using ambulatory cardiac patch monitoring at baseline (median patch wear time, 6 days) and over a 12-month follow-up (median patch wear time, 125 days). The investigators determined the association of baseline AF burden with long-term clinical events and examined the effect of atrial shunt therapy on AF burden over time. RESULTS: Among 367 patients with cardiac monitoring data at baseline and follow-up, 194 (53%) had a history of AF or atrial flutter (AFL), and median baseline AF burden was 0.012% (IQR: 0%-1.3%). After multivariable adjustment, baseline AF burden ≥0.012% was significantly associated with heart failure (HF) events (HR: 2.00; 95% CI: 1.17-3.44; P = 0.01) both with and without a history of AF or AFL (P for interaction = 0.68). Adjustment for left atrial reservoir strain attenuated the baseline AF burden-HF event association (HR: 1.71; 95% CI: 0.93-3.14; P = 0.08). Of the 367 patients, 141 (38%) had patch-detected AF during follow-up without a history of AF or AFL. Atrial shunt therapy did not change AF incidence or burden during follow-up. CONCLUSIONS: In HFpEF and HFmrEF, nearly 40% of patients have subclinical AF by 1 year. Baseline AF burden, even at low levels, is associated with HF events. Atrial shunt therapy does not affect AF incidence or burden. (A Study to Evaluate the Corvia Medical, Inc IASD System II to Reduce Elevated Left Atrial Pressure in Patients with Heart Failure [REDUCE LAP-HF II]; NCT03088033).


Subject(s)
Atrial Fibrillation , Heart Failure , Humans , Atrial Fibrillation/epidemiology , Stroke Volume , Heart Atria , Prosthesis Implantation , Prognosis
2.
Digit Biomark ; 6(3): 117-126, 2022.
Article in English | MEDLINE | ID: mdl-36466954

ABSTRACT

Introduction: Little is known if, and to what extent, outpatient red blood cell (RBC) transfusions benefit chronic transfusion-dependent patients. Costs, labour, and potential side effects of RBC transfusions cause a restrictive transfusion strategy to be the standard of care. However, effects on the actual performance and quality of life of patients who require RBCs on a regular basis are hardly studied. The aim of this study was to assess if new technologies and techniques like wearable biosensor devices and web-based testing can be used to measure physiological changes, functional activity, and hence eventually better assess quality of life in a cohort of transfusion-dependent patients. Methods: We monitored 5 patients who regularly receive transfusions during one transfusion cycle with the accelerateIQ biosensor platform, the Withings Steel HR, and web-based cognitive and quality of life testing. Results: Data collection by the deployed devices was shown to be feasible; the AccelerateIQ platform rendered data of which 97.8% was of high quality and usable; of the data the Withings Steel HR rendered, 98.9% was of high quality and usable. Furthermore, heart rate decreased and cognition improved significantly following RBC transfusions. Activity and quality of life measures did not show transfusion-induced changes. Conclusion: In a 5-patient cohort of transfusion-dependent patients, we found that the accelerateIQ, Withings Steel HR, and CANTAB platforms enable acquisition of high-quality data. The collected data suggest that RBC transfusions significantly and reversibly decrease heart rate and increase sustained attention in this cohort. This feasibility study justifies larger validation trials to confirm that these wearables can indeed help to determine personalized RBC transfusion strategies and thus optimization of each patient's quality of life.

3.
Annu Rev Biomed Eng ; 24: 1-27, 2022 06 06.
Article in English | MEDLINE | ID: mdl-34932906

ABSTRACT

Mounting clinical evidence suggests that viral infections can lead to detectable changes in an individual's normal physiologic and behavioral metrics, including heart and respiration rates, heart rate variability, temperature, activity, and sleep prior to symptom onset, potentially even in asymptomatic individuals. While the ability of wearable devices to detect viral infections in a real-world setting has yet to be proven, multiple recent studies have established that individual, continuous data from a range of biometric monitoring technologies can be easily acquired and that through the use of machine learning techniques, physiological signals and warning signs can be identified. In this review, we highlight the existing knowledge base supporting the potential for widespread implementation of biometric data to address existing gaps in the diagnosis and treatment of viral illnesses, with a particular focus on the many important lessons learned from the coronavirus disease 2019 pandemic.


Subject(s)
COVID-19 , Wearable Electronic Devices , Biometry , COVID-19/diagnosis , Humans
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5625-5630, 2021 11.
Article in English | MEDLINE | ID: mdl-34892399

ABSTRACT

Photoplethysmography (PPG) is a non-invasive and economical technique to extract vital signs of the human body. Although it has been widely used in consumer and research grade wrist devices to track a user's physiology, the PPG signal is very sensitive to motion which can corrupt the signal's quality. Existing Motion Artifact (MA) reduction techniques have been developed and evaluated using either synthetic noisy signals or signals collected during high-intensity activities - both of which are difficult to generalize for real-life scenarios. Therefore, it is valuable to collect realistic PPG signals while performing Activities of Daily Living (ADL) to develop practical signal denoising and analysis methods. In this work, we propose an automatic pseudo clean PPG generation process for reliable PPG signal selection. For each noisy PPG segment, the corresponding pseudo clean PPG reduces the MAs and contains rich temporal details depicting cardiac features. Our experimental results show that 71% of the pseudo clean PPG collected from ADL can be considered as high quality segment where the derived MAE of heart rate and respiration rate are 1.46 BPM and 3.93 BrPM, respectively. Therefore, our proposed method can determine the reliability of the raw noisy PPG by considering quality of the corresponding pseudo clean PPG signal.


Subject(s)
Artifacts , Photoplethysmography , Activities of Daily Living , Algorithms , Humans , Reproducibility of Results , Signal Processing, Computer-Assisted
5.
NPJ Digit Med ; 4(1): 155, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34750499

ABSTRACT

The COVID-19 pandemic has accelerated the adoption of innovative healthcare methods, including remote patient monitoring. In the setting of limited healthcare resources, outpatient management of individuals newly diagnosed with COVID-19 was commonly implemented, some taking advantage of various personal health technologies, but only rarely using a multi-parameter chest-patch for continuous monitoring. Here we describe the development and validation of a COVID-19 decompensation index (CDI) model based on chest patch-derived continuous sensor data to predict COVID-19 hospitalizations in outpatient-managed COVID-19 positive individuals, achieving an overall AUC of the ROC Curve of 0.84 on 308 event negative participants, and 22 event positive participants, out of an overall study cohort of 400 participants. We retrospectively compare the performance of CDI to standard of care modalities, finding that the machine learning model outperforms the standard of care modalities in terms of both numbers of events identified and with a lower false alarm rate. While only a pilot phase study, the CDI represents a promising application of machine learning within a continuous remote patient monitoring system.

6.
JMIR Res Protoc ; 10(5): e27271, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33949966

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, novel digital health technologies have the potential to improve our understanding of SARS-CoV-2 and COVID-19, improve care delivery, and produce better health outcomes. The National Institutes of Health called on digital health leaders to contribute to a high-quality data repository that will support researchers to make discoveries that are otherwise not possible with small, limited data sets. OBJECTIVE: To this end, we seek to develop a COVID-19 digital biomarker for early detection of physiological exacerbation or decompensation. We propose the development and validation of a COVID-19 decompensation Index (CDI) in a 2-phase study that builds on existing wearable biosensor-derived analytics generated by physIQ's end-to-end cloud platform for continuous physiological monitoring with wearable biosensors. This effort serves to achieve two primary objectives: (1) to collect adequate data to help develop the CDI and (2) to collect rich deidentified clinical data correlating with outcomes and symptoms related to COVID-19 progression. Our secondary objectives include evaluation of the feasibility and usability of pinpointIQ, a digital platform through which data are gathered, analyzed, and displayed. METHODS: This is a prospective, nonrandomized, open-label, 2-phase study. Phase I will involve data collection for the digital data hub of the National Institutes of Health as well as data to support the preliminary development of the CDI. Phase II will involve data collection for the hub and contribute to continued refinement and validation of the CDI. While this study will focus on the development of a CDI, the digital platform will also be evaluated for feasibility and usability while clinicians deliver care to continuously monitored patients enrolled in the study. RESULTS: Our target CDI will be a binary classifier trained to distinguish participants with and those without decompensation. The primary performance metric for CDI will be the area under the receiver operating characteristic curve with a minimum performance criterion of ≥0.75 (α=.05; power [1-ß]=0.80). Furthermore, we will determine the sex or gender and race or ethnicity of the participants, which would account for differences in the CDI performance, as well as the lead time-time to predict decompensation-and its relationship with the ultimate disease severity based on the World Health Organization COVID-19 ordinal scale. CONCLUSIONS: Using machine learning techniques on a large data set of patients with COVID-19 could provide valuable insights into the pathophysiology of COVID-19 and a digital biomarker for COVID-19 decompensation. Through this study, we intend to develop a tool that can uniquely reflect physiological data of a diverse population and contribute to high-quality data that will help researchers better understand COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov NCT04575532; https://www.clinicaltrials.gov/ct2/show/NCT04575532. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/27271.

7.
Front Cardiovasc Med ; 7: 120, 2020.
Article in English | MEDLINE | ID: mdl-32850982

ABSTRACT

There are many approaches to maintaining wellness, including taking a simple vacation to attending highly structured wellness retreats, which typically regulate the attendee's personal time and activities. In a healthy English-speaking cohort of 112 women and men (aged 30-80 years), this study examined the effects of participating in either a 6-days intensive wellness retreat based on Ayurvedic medicine principles or unstructured 6-days vacation at the same wellness center setting. Heart rate variability (HRV) was monitored continuously using a wearable ECG sensor patch for up to 7 days prior to, during, and 1-month following participation in the interventions. Additionally, salivary cortisol levels were assessed for all participants at multiple times during the day. Continual HRV monitoring data in the real-world setting was seen to be associated with demographic [HRVALF: ßAge = 0.98 (95% CI = 0.96-0.98), false discovery rate (FDR) < 0.001] and physiological characteristics [HRVPLF: ß = 0.98 (95% CI = 0.98-1), FDR =0.005] of participants. HRV features were also able to quantify known diurnal variations [HRVLF/HF: ßACT:night vs. early-morning = 2.69 (SE = 1.26), FDR < 0.001] along with notable inter- and intraperson heterogeneity in response to intervention. A statistically significant increase in HRVALF [ß = 1.48 (SE = 1.1), FDR < 0.001] was observed for all participants during the resort visit. Personalized HRV analysis at an individual level showed a distinct individualized response to intervention, further supporting the utility of using continuous real-world tracking of HRV at an individual level to objectively measure responses to potentially stressful or relaxing settings.

8.
Circ Heart Fail ; 13(3): e006513, 2020 03.
Article in English | MEDLINE | ID: mdl-32093506

ABSTRACT

BACKGROUND: Implantable cardiac sensors have shown promise in reducing rehospitalization for heart failure (HF), but the efficacy of noninvasive approaches has not been determined. The objective of this study was to determine the accuracy of noninvasive remote monitoring in predicting HF rehospitalization. METHODS: The LINK-HF study (Multisensor Non-invasive Remote Monitoring for Prediction of Heart Failure Exacerbation) examined the performance of a personalized analytical platform using continuous data streams to predict rehospitalization after HF admission. Study subjects were monitored for up to 3 months using a disposable multisensor patch placed on the chest that recorded physiological data. Data were uploaded continuously via smartphone to a cloud analytics platform. Machine learning was used to design a prognostic algorithm to detect HF exacerbation. Clinical events were formally adjudicated. RESULTS: One hundred subjects aged 68.4±10.2 years (98% male) were enrolled. After discharge, the analytical platform derived a personalized baseline model of expected physiological values. Differences between baseline model estimated vital signs and actual monitored values were used to trigger a clinical alert. There were 35 unplanned nontrauma hospitalization events, including 24 worsening HF events. The platform was able to detect precursors of hospitalization for HF exacerbation with 76% to 88% sensitivity and 85% specificity. Median time between initial alert and readmission was 6.5 (4.2-13.7) days. CONCLUSIONS: Multivariate physiological telemetry from a wearable sensor can provide accurate early detection of impending rehospitalization with a predictive accuracy comparable to implanted devices. The clinical efficacy and generalizability of this low-cost noninvasive approach to rehospitalization mitigation should be further tested. Registration: URL: https://www.clinicaltrials.gov. Unique Identifier: NCT03037710.


Subject(s)
Diagnosis, Computer-Assisted/instrumentation , Heart Failure/diagnosis , Machine Learning , Patient Readmission , Telemetry/instrumentation , Wearable Electronic Devices , Aged , Aged, 80 and over , Cloud Computing , Equipment Design , Female , Heart Failure/physiopathology , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Reproducibility of Results , Risk Assessment , Risk Factors , Smartphone , Time Factors , United States/epidemiology
9.
Digit Health ; 5: 2055207619879349, 2019.
Article in English | MEDLINE | ID: mdl-31632685

ABSTRACT

OBJECTIVE: Critical care capabilities needed for the management of septic patients, such as continuous vital sign monitoring, are largely unavailable in most emergency departments (EDs) in low- and middle-income country (LMIC) settings. This study aimed to assess the feasibility and accuracy of using a wireless wearable biosensor device for continuous vital sign monitoring in ED patients with suspected sepsis in an LMIC setting. METHODS: This was a prospective observational study of pediatric (≥2 mon) and adult patients with suspected sepsis at the Kigali University Teaching Hospital ED. Heart rate, respiratory rate and temperature measurements were continuously recorded using a wearable biosensor device for the duration of the patients' ED course and compared to intermittent manually collected vital signs. RESULTS: A total of 42 patients had sufficient data for analysis. Mean duration of monitoring was 32.8 h per patient. Biosensor measurements were strongly correlated with manual measurements for heart rate (r = 0.87, p < 0.001) and respiratory rate (r = 0.75, p < 0.001), although were less strong for temperature (r = 0.61, p < 0.001). Mean (SD) differences between biosensor and manual measurements were 1.2 (11.4) beats/min, 2.5 (5.5) breaths/min and 1.4 (1.0)°C. Technical or practical feasibility issues occurred in 12 patients (28.6%) although were minor and included biosensor detachment, connectivity problems, removal for a radiologic study or exam, and patient/parent desire to remove the device. CONCLUSIONS: Wearable biosensor devices can be feasibly implemented and provide accurate continuous heart rate and respiratory rate monitoring in acutely ill pediatric and adult ED patients with sepsis in an LMIC setting.

10.
BMJ Glob Health ; 1(1): e000070, 2016.
Article in English | MEDLINE | ID: mdl-28588930

ABSTRACT

BACKGROUND: The recent Ebola epidemic in West Africa strained existing healthcare systems well beyond their capacities due to the extreme volume and severity of illness of the patients. The implementation of innovative digital technologies within available care centres could potentially improve patient care as well as healthcare worker safety and effectiveness. METHODS: We developed a Modular Wireless Patient Monitoring System (MWPMS) and conducted a proof of concept study in an Ebola treatment centre (ETC) in Makeni, Sierra Leone. The system was built around a wireless, multiparametric 'band-aid' patch sensor for continuous vital sign monitoring and transmission, plus sophisticated data analytics. Results were used to develop personalised analytics to support automated alerting of early changes in patient status. RESULTS: During the 3-week study period, all eligible patients (n=26) admitted to the ETC were enrolled in the study, generating a total of 1838 hours of continuous vital sign data (mean of 67.8 hours/patient), including heart rate, heart rate variability, activity, respiratory rate, pulse transit time (inversely related to blood pressure), uncalibrated skin temperature and posture. All patients tolerated the patch sensor without problems. Manually determined and automated vital signs were well correlated. Algorithm-generated Multivariate Change Index, pulse transit time and arrhythmia burden demonstrated encouraging preliminary findings of important physiological changes, as did ECG waveform changes. CONCLUSIONS: In this proof of concept study, we were able to demonstrate that a portable, deployable system for continuous vital sign monitoring via a wireless, wearable sensor supported by a sophisticated, personalised analytics platform can provide high-acuity monitoring with a continuous, objective measure of physiological status of all patients that is achievable in virtually any healthcare setting, anywhere in the world.

12.
Biomed Sci Instrum ; 50: 219-24, 2014.
Article in English | MEDLINE | ID: mdl-25405427

ABSTRACT

UNLABELLED: Background. Monitoring cardiovascular hemodynamics in the modern clinical setting is a major challenge. Increasing amounts of physiologic data must be analyzed and interpreted in the context of the individual patient’s pathology and inherent biologic variability. Certain data-driven analytical methods are currently being explored for smart monitoring of data streams from patients as a first tier automated detection system for clinical deterioration. As a prelude to human clinical trials, an empirical multivariate machine learning method called Similarity-Based Modeling (“SBM”), was tested in an In Silico experiment using data generated with the aid of a detailed computer simulator of human physiology (Quantitative Circulatory Physiology or “QCP”) which contains complex control systems with realistic integrated feedback loops. Methods. SBM is a kernel-based, multivariate machine learning method that that uses monitored clinical information to generate an empirical model of a patient’s physiologic state. This platform allows for the use of predictive analytic techniques to identify early changes in a patient’s condition that are indicative of a state of deterioration or instability. The integrity of the technique was tested through an In Silico experiment using QCP in which the output of computer simulations of a slowly evolving cardiac tamponade resulted in progressive state of cardiovascular decompensation. Simulator outputs for the variables under consideration were generated at a 2-min data rate (0.083Hz) with the tamponade introduced at a point 420 minutes into the simulation sequence. The functionality of the SBM predictive analytics methodology to identify clinical deterioration was compared to the thresholds used by conventional monitoring methods. Results. The SBM modeling method was found to closely track the normal physiologic variation as simulated by QCP. With the slow development of the tamponade, the SBM model are seen to disagree while the simulated biosignals in the early stages of physiologic deterioration and while the variables are still within normal ranges. Thus, the SBM system was found to identify pathophysiologic conditions in a timeframe that would not have been detected in a usual clinical monitoring scenario. Conclusion. In this study the functionality of a multivariate machine learning predictive methodology that that incorporates commonly monitored clinical information was tested using a computer model of human physiology. SBM and predictive analytics were able to differentiate a state of decompensation while the monitored variables were still within normal clinical ranges. This finding suggests that the SBM could provide for early identification of a clinical deterioration using predictive analytic techniques. KEYWORDS: predictive analytics, hemodynamic, monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...