Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ChemMedChem ; : e202300473, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38230842

ABSTRACT

The synthesis and pharmacological activity of a new series of dual ligands combining activities towards the α2δ-1 subunit of voltage-gated calcium channels (Cav α2δ-1) and the µ-opioid receptor (MOR) as novel pain therapeutics are reported. A careful exploration of the pharmacophores related to both targets, which in principle had few common characteristics, led to the design of novel compounds exhibiting both activities. The construction of the dual ligands started from published Cav α2δ-1 ligands, onto which MOR ligand pharmacophoric elements were added. This exercise led to new amino-acidic substances with good affinities on both targets as well as good metabolic and physicochemical profiles and low potential for drug-drug interactions. A representative compound, (2S,4S)-4-(4-chloro-3-(((cis)-4-(dimethylamino)-4-phenylcyclohexyl)methyl)-5-fluorophenoxy)pyrrolidine-2-carboxylic acid, displayed promising analgesic activities in several in vivo pain models as well as a reduced side-effect profile in relation to morphine.

2.
ChemMedChem ; 18(23): e202300457, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37872124

ABSTRACT

(R)-PFI-2 is a histone substrate-competitive inhibitor of the human histone lysine monomethyltransferase SETD7. Aimed at developing potent inhibitors of SETD7 that can also act as small molecule substrates, we replaced the pyrrolidine ring of (R)-PFI-2 with several side chains bearing nucleophilic functional groups. We explored the inhibitory activity of 20 novel (R)-PFI-2 analogues, and found that the most potent analogue has a hydroxyethyl side chain (7). SETD7's ability to catalyse methylation of (R)-PFI-2-based small molecules was evaluated by mass spectrometric assays, and we observed efficient methylation of analogues bearing lysine mimicking nucleophilic amines. The optimal side chain was found to be an aminoethyl group (1), which was surprisingly also dimethylated by SETD7. The work demonstrates that small molecules can act as both substrates and inhibitors of biomedically important SETD7.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Humans , Lysine , Pyrrolidines/pharmacology , Pyrrolidines/chemistry
3.
Cancer Res Commun ; 2(4): 233-245, 2022 04.
Article in English | MEDLINE | ID: mdl-36873622

ABSTRACT

The catalytic enzymes tankyrase 1 and 2 (TNKS1/2) alter protein turnover by poly-ADP-ribosylating target proteins, which earmark them for degradation by the ubiquitin-proteasomal system. Prominent targets of the catalytic activity of TNKS1/2 include AXIN proteins, resulting in TNKS1/2 being attractive biotargets for addressing of oncogenic WNT/ß-catenin signaling. Although several potent small molecules have been developed to inhibit TNKS1/2, there are currently no TNKS1/2 inhibitors available in clinical practice. The development of tankyrase inhibitors has mainly been disadvantaged by concerns over biotarget-dependent intestinal toxicity and a deficient therapeutic window. Here we show that the novel, potent, and selective 1,2,4-triazole-based TNKS1/2 inhibitor OM-153 reduces WNT/ß-catenin signaling and tumor progression in COLO 320DM colon carcinoma xenografts upon oral administration of 0.33-10 mg/kg twice daily. In addition, OM-153 potentiates anti-programmed cell death protein 1 (anti-PD-1) immune checkpoint inhibition and antitumor effect in a B16-F10 mouse melanoma model. A 28-day repeated dose mouse toxicity study documents body weight loss, intestinal damage, and tubular damage in the kidney after oral-twice daily administration of 100 mg/kg. In contrast, mice treated oral-twice daily with 10 mg/kg show an intact intestinal architecture and no atypical histopathologic changes in other organs. In addition, clinical biochemistry and hematologic analyses do not identify changes indicating substantial toxicity. The results demonstrate OM-153-mediated antitumor effects and a therapeutic window in a colon carcinoma mouse model ranging from 0.33 to at least 10 mg/kg, and provide a framework for using OM-153 for further preclinical evaluations. Significance: This study uncovers the effectiveness and therapeutic window for a novel tankyrase inhibitor in mouse tumor models.


Subject(s)
Carcinoma , Colonic Neoplasms , Tankyrases , Humans , Mice , Animals , beta Catenin/chemistry , Colonic Neoplasms/drug therapy , Wnt Signaling Pathway
4.
J Med Chem ; 64(24): 17936-17949, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34878777

ABSTRACT

Tankyrase 1 and 2 (TNKS1/2) catalyze post-translational modification by poly-ADP-ribosylation of a plethora of target proteins. In this function, TNKS1/2 also impact the WNT/ß-catenin and Hippo signaling pathways that are involved in numerous human disease conditions including cancer. Targeting TNKS1/2 with small-molecule inhibitors shows promising potential to modulate the involved pathways, thereby potentiating disease intervention. Based on our 1,2,4-triazole-based lead compound 1 (OM-1700), further structure-activity relationship analyses of East-, South- and West-single-point alterations and hybrids identified compound 24 (OM-153). Compound 24 showed picomolar IC50 inhibition in a cellular (HEK293) WNT/ß-catenin signaling reporter assay, no off-target liabilities, overall favorable absorption, distribution, metabolism, and excretion (ADME) properties, and an improved pharmacokinetic profile in mice. Moreover, treatment with compound 24 induced dose-dependent biomarker engagement and reduced cell growth in the colon cancer cell line COLO 320DM.


Subject(s)
Drug Development , Enzyme Inhibitors/pharmacology , Tankyrases/antagonists & inhibitors , Triazoles/pharmacology , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Hippo Signaling Pathway/drug effects , Humans , Mice , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacokinetics , Wnt Signaling Pathway/drug effects
5.
J Med Chem ; 63(13): 6834-6846, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32511917

ABSTRACT

Tankyrases 1 and 2 are central biotargets in the WNT/ß-catenin signaling and Hippo signaling pathways. We have previously developed tankyrase inhibitors bearing a 1,2,4-triazole moiety and binding predominantly to the adenosine binding site of the tankyrase catalytic domain. Here we describe a systematic structure-guided lead optimization approach of these tankyrase inhibitors. The central 1,2,4-triazole template and trans-cyclobutyl linker of the lead compound 1 were left unchanged, while side-group East, West, and South moieties were altered by introducing different building blocks defined as point mutations. The systematic study provided a novel series of compounds reaching picomolar IC50 inhibition in WNT/ß-catenin signaling cellular reporter assay. The novel optimized lead 13 resolves previous atropisomerism, solubility, and Caco-2 efflux liabilities. 13 shows a favorable ADME profile, including improved Caco-2 permeability and oral bioavailability in mice, and exhibits antiproliferative efficacy in the colon cancer cell line COLO 320DM in vitro.


Subject(s)
Drug Design , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Tankyrases/antagonists & inhibitors , Triazoles/chemistry , Triazoles/pharmacology , Animals , Biological Availability , Caco-2 Cells , Cell Proliferation/drug effects , Humans , Mice , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Solubility , Triazoles/pharmacokinetics
6.
Sci Rep ; 10(1): 3671, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111884

ABSTRACT

Methylation of lysine residues in histone proteins is catalyzed by S-adenosylmethionine (SAM)-dependent histone lysine methyltransferases (KMTs), a genuinely important class of epigenetic enzymes of biomedical interest. Here we report synthetic, mass spectrometric, NMR spectroscopic and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics studies on KMT-catalyzed methylation of histone peptides that contain lysine and its sterically demanding analogs. Our synergistic experimental and computational work demonstrates that human KMTs have a capacity to catalyze methylation of slightly bulkier lysine analogs, but lack the activity for analogs that possess larger aromatic side chains. Overall, this study provides an important chemical insight into molecular requirements that contribute to efficient KMT catalysis and expands the substrate scope of KMT-catalyzed methylation reactions.


Subject(s)
Histone-Lysine N-Methyltransferase/chemistry , Lysine/chemistry , Catalysis , Catalytic Domain , Humans
7.
Chem Commun (Camb) ; 56(20): 3039-3042, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32048637

ABSTRACT

We report synthesis and enzymatic assays on human histone lysine methyltransferase catalysed methylation of histones that possess lysine and its geometrically constrained analogues containing rigid (E)-alkene (KE), (Z)-alkene (KZ) and alkyne (Kyne) moieties. Methyltransferases G9a and GLP do have a capacity to catalyse methylation in the order K ≫ KE > KZ ∼ Kyne, whereas monomethyltransferase SETD8 catalyses only methylation of K and KE.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Lysine/metabolism , Alkenes/chemistry , Alkenes/metabolism , Alkynes/chemistry , Alkynes/metabolism , Biocatalysis , Humans , Lysine/analogs & derivatives , Lysine/chemistry , Methylation , Molecular Conformation
8.
Bioorg Med Chem Lett ; 29(17): 2516-2524, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31350126

ABSTRACT

Detailed structure activity relationship of two series of quinazoline EHMT1/EHMT2 inhibitors (UNC0224 and UNC0638) have been elaborated. New and active alternatives are presented for the ubiquitous substitution patterns found in literature for the linker to the lysine mimicking region and the lysine mimic itself. These findings could allow for advancing EHMT1/EHMT2 inhibitors of that type beyond tool compounds by fine-tuning physicochemical properties making these inhibitors more drug-like. .


Subject(s)
Enzyme Inhibitors/chemistry , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Binding Sites , Cell Line, Tumor , Drug Design , Enzyme Inhibitors/metabolism , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Inhibitory Concentration 50 , Lysine/chemistry , Molecular Docking Simulation , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Point Mutation , Quinazolines/chemistry , Quinazolines/metabolism , Structure-Activity Relationship
9.
ChemMedChem ; 13(14): 1405-1413, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29869845

ABSTRACT

SETD7 is a histone H3K4 lysine methyltransferase involved in human gene regulation. Aberrant expression of SETD7 has been associated with various diseases, including cancer. Therefore, SETD7 is considered a good target for the development of new epigenetic drugs. To date, few selective small-molecule inhibitors have been reported that target SETD7, the most potent being (R)-PFI-2. Herein we report structure-activity relationship studies on (R)-PFI-2 and its analogues. A library of 29 structural analogues of (R)-PFI-2 was synthesized and evaluated for inhibition of recombinantly expressed human SETD7. The key interactions were found to be a salt bridge and a hydrogen bond formed between (R)-PFI-2's NH2+ group and SETD7's Asp256 and His252 residue, respectively.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/pharmacology , Enzyme Inhibitors/chemical synthesis , Epigenesis, Genetic/drug effects , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Humans , Molecular Docking Simulation , Pyrrolidines/chemical synthesis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Tetrahydroisoquinolines/chemical synthesis
10.
Mol Pharm ; 14(12): 4362-4373, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29099189

ABSTRACT

Drug induced phospholipidosis (PLD) may be observed in the preclinical phase of drug development and pose strategic questions. As lysosomes have a central role in pathogenesis of PLD, assessment of lysosomal concentrations is important for understanding the pharmacokinetic basis of PLD manifestation and forecast of potential clinical appearance. Herein we present a systematic approach to provide insight into tissue-specific PLD by evaluation of unbound intracellular and lysosomal (reflecting acidic organelles) concentrations of two structurally related diprotic amines, GRT1 and GRT2. Their intratissue distribution was assessed using brain and lung slice assays. GRT1 induced PLD both in vitro and in vivo. GRT1 showed a high intracellular accumulation that was more pronounced in the lung, but did not cause cerebral PLD due to its effective efflux at the blood-brain barrier. Compared to GRT1, GRT2 revealed higher interstitial fluid concentrations in lung and brain, but more than 30-fold lower lysosomal trapping capacity. No signs of PLD were seen with GRT2. The different profile of GRT2 relative to GRT1 is due to a structural change resulting in a reduced basicity of one amino group. Hence, by distinct chemical modifications, undesired lysosomal trapping can be separated from desired drug delivery into different organs. In summary, assessment of intracellular unbound concentrations was instrumental in delineating the intercompound and intertissue differences in PLD induction in vivo and could be applied for identification of potential lysosomotropic compounds in drug development.


Subject(s)
Diamines/pharmacology , Lipidoses/chemically induced , Models, Biological , Animals , Brain/metabolism , Chemistry, Pharmaceutical , Extracellular Fluid/metabolism , Female , Hep G2 Cells , Humans , Lung/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Male , Models, Animal , Models, Chemical , Phospholipids/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Tissue Distribution
11.
J Med Chem ; 60(6): 2526-2551, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28218838

ABSTRACT

In order to develop novel κ agonists restricted to the periphery, a diastereo- and enantioselective synthesis of (4aR,5S,8aS)-configured decahydroquinoxalines 5-8 was developed. Physicochemical and pharmacological properties were fine-tuned by structural modifications in the arylacetamide and amine part of the pharmacophore as well as in the amine part outside the pharmacophore. The decahydroquinoxalines 5-8 show single-digit nanomolar to subnanomolar κ-opioid receptor affinity, full κ agonistic activity in the [35S]GTPγS assay, and high selectivity over µ, δ, σ1, and σ2 receptors as well as the PCP binding site of the NMDA receptor. Several analogues were selective for the periphery. The anti-inflammatory activity of 5-8 after topical application was investigated in two mouse models of dermatitis. The methanesulfonamide 8a containing the (S)-configured hydroxypyrrolidine ring was identified as a potent (Ki = 0.63 nM) and highly selective κ agonist (EC50 = 1.8 nM) selective for the periphery with dose-dependent anti-inflammatory activity in acute and chronic skin inflammation.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Dermatitis/drug therapy , Quinoxalines/chemistry , Quinoxalines/therapeutic use , Receptors, Opioid, kappa/agonists , Skin/drug effects , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Dermatitis/pathology , Drug Design , Guinea Pigs , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Quinoxalines/pharmacokinetics , Quinoxalines/pharmacology , Rats, Wistar , Skin/pathology
12.
Carbohydr Res ; 341(16): 2641-52, 2006 Nov 27.
Article in English | MEDLINE | ID: mdl-16989789

ABSTRACT

The dithionite-mediated addition of BrCF(2)Cl to 3,4-di-O-pivaloyl-D-xylal (1) generated preferably 1-CF(2)Cl-substituted products, that is, (2-bromo-2-deoxy-3,4-di-O-pivaloyl-beta-D-xylopyranosyl)-chlorodifluoromethane and (2-deoxy-3,4-di-O-pivaloyl-beta-D-threo-pentopyranosyl)-chlorodifluoromethane. Selected chlorodifluoromethyl-substituted monosaccharide derivatives were hydrodechlorinated or alkylated at the CF(2)Cl-group using tin reagents under radical reaction conditions. Thus, hydrodechlorinations of (2,3,4-tri-O-acetyl-6-deoxy-alpha-L-galactopyranosyl)-chlorodifluoromethane and of methyl 3,4-di-O-acetyl-2-C-chlorodifluoromethyl-2,6-dideoxy-alpha/beta-L-glucopyranoside are reported using tri-n-butyltin hydride initiated by AIBN. UV-initiated allylations are reported for reactions of (2-deoxy-3,4-di-O-pivaloyl-beta-D-threo-pentopyranosyl)-chlorodifluoromethane, (2,3,4-tri-O-acetyl-6-deoxy-alpha-L-galactopyranosyl)-chlorodifluoromethane, 1,3,4,6-tetra-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha-D-glucopyranose, 1,3,4,6-tetra-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha-D-mannopyranose and methyl 3,4-di-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha/beta-D-rabinopyranoside with allyltri-n-butyltin.


Subject(s)
Carbon/chemistry , Chlorine/chemistry , Chlorofluorocarbons, Methane/chemistry , Monosaccharides/chemistry , Models, Molecular , Trialkyltin Compounds/chemistry
13.
Carbohydr Res ; 339(10): 1833-7, 2004 Jul 12.
Article in English | MEDLINE | ID: mdl-15220096

ABSTRACT

The attempted conversion, by treatment with CsF/TBFA in MeCN, of acetylated derivatives of 2-chlorodifluoromethyl-2-deoxyhexopyranoses into their corresponding 2-trifluoromethyl derivatives was always accompanied by an elimination reaction. Thus, representative educts with the D-gluco- and D-manno-configuration gave derivatives of 2,3-dideoxy-2-trifluoromethyl-D-erythro-hex-2-enopyranose and 1,5-anhydro-2-deoxy-2-trifluoromethyl-d-arabino-hex-1-enitol, respectively. X-ray analyses are given for 1,3,4,6-tetra-O-acetyl-2-chlorodifluoromethyl-2-deoxy-alpha-D-mannopyranose and 4,6-di-O-acetyl-2,3-dideoxy-2-trifluoromethyl-alpha-D-erythro-hex-2-enopyranose.


Subject(s)
Carbohydrates/chemistry , Cyanides/chemistry , Deoxy Sugars/chemistry , Fluorenes/chemistry , Glycosides/chemical synthesis , Methane/analogs & derivatives , Pyrans/chemistry , Carbohydrate Conformation , Chromatography , Chromatography, Thin Layer , Hydrocarbons , Hydrogen , Magnetic Resonance Spectroscopy , Methane/chemistry , Models, Chemical , Models, Molecular , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...