Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(5): 109688, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38660405

ABSTRACT

Non-invasive assessment of fibrogenic activity, rather than fibrotic scars, could significantly improve the management of fibrotic diseases and the development of anti-fibrotic drugs. This study explores the potential of an Affibody molecule (Z09591) labeled with the Al(18)F-restrained complexing agent (RESCA) method as a tracer for the non-invasive detection of fibrogenic cells. Z09591 was functionalized with the RESCA chelator for direct labeling with [18F]AlF. In vivo positron emission tomography/magnetic resonance imaging scans on U-87 tumor-bearing mice exhibited high selectivity of the resulting radiotracer, [18F]AlF-RESCA-Z09591, for platelet-derived growth factor receptor ß (PDGFRß), with minimal non-specific background uptake. Evaluation in a mouse model with carbon tetrachloride-induced fibrotic liver followed by a disease regression phase, revealed the radiotracer's high affinity and specificity for fibrogenic cells in fibrotic livers (standardized uptake value [SUV] 0.43 ± 0.05), with uptake decreasing during recovery (SUV 0.29 ± 0.03) (p < 0.0001). [18F]AlF-RESCA-Z09591 accurately detects PDGFRß, offering non-invasive assessment of fibrogenic cells and promising applications in precise liver fibrogenesis diagnosis, potentially contributing significantly to anti-fibrotic drug development.

2.
J Nucl Med ; 65(2): 294-299, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38050119

ABSTRACT

Rheumatoid arthritis (RA) is the most common inflammatory joint disease, and early diagnosis is key for effective disease management. CD69 is one of the earliest cell surface markers seen at the surface of activated immune cells, and CD69 is upregulated in synovial tissue in patients with active RA. In this study, we evaluated the performance of a CD69-targeting PET agent, [68Ga]Ga-DOTA-ZCAM241, for early disease detection in a model of inflammatory arthritis. Methods: A model of inflammatory arthritis was induced by transferring splenocytes from KRN T-cell receptor transgenic B6 mice into T-cell-deficient I-Ag7 major histocompatibility complex class II-expressing recipient mice. The mice were examined longitudinally by [68Ga]Ga-DOTA-ZCAM241 PET/CT before and 3, 7, and 12 d after induction of arthritis. Disease progression was monitored by clinical parameters, including measuring body weight and scoring the swelling of the paws. The uptake of [68Ga]Ga-DOTA-ZCAM241 in the paws was analyzed and expressed as SUVmean Tissue biopsy samples were analyzed for CD69 expression by flow cytometry or immunostaining for a histologic correlate. A second group of mice was examined by a nonbinding, size-matched Affibody molecule as the control. Results: Clinical symptoms appeared 5-7 d after induction of arthritis. The uptake of [68Ga]Ga-DOTA-ZCAM241 in the joints was negligible at baseline but increased gradually after disease induction. An elevated PET signal was found on day 3, before the appearance of clinical symptoms. The uptake of [68Ga]Ga-DOTA-ZCAM241 correlated with the clinical score and disease severity. The presence of CD69-positive cells in the joints and lymph nodes was confirmed by flow cytometry and immunostaining. The uptake of the nonbinding tracer that was the negative control also increased gradually with disease progression, although to a lesser extent than with [68Ga]Ga-DOTA-ZCAM241 Conclusion: The uptake of [68Ga]Ga-DOTA-ZCAM241 in the inflamed joints preceded the clinical symptoms in the KRN T-cell transfer model of inflammatory arthritis, in accordance with immunostaining for CD69. [68Ga]Ga-DOTA-ZCAM241 is thus a promising PET imaging marker of activated immune cells in tissue during RA onset.


Subject(s)
Arthritis, Rheumatoid , Positron Emission Tomography Computed Tomography , Humans , Mice , Animals , Positron Emission Tomography Computed Tomography/methods , Gallium Radioisotopes , Arthritis, Rheumatoid/metabolism , Positron-Emission Tomography , Mice, Transgenic , Disease Progression
3.
EJNMMI Radiopharm Chem ; 8(1): 23, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37733133

ABSTRACT

BACKGROUND: Platelet-derived growth factor receptor beta (PDGFRß) is a receptor overexpressed on activated hepatic stellate cells (aHSCs). Positron emission tomography (PET) imaging of PDGFRß could potentially allow the quantification of fibrogenesis in fibrotic livers. This study aims to evaluate a fluorine-18 radiolabeled Affibody molecule ([18F]TZ-Z09591) as a PET tracer for imaging liver fibrogenesis. RESULTS: In vitro specificity studies demonstrated that the trans-Cyclooctenes (TCO) conjugated Z09591 Affibody molecule had a picomolar affinity for human PDGFRß. Biodistribution performed on healthy rats showed rapid clearance of [18F]TZ-Z09591 through the kidneys and low liver background uptake. Autoradiography (ARG) studies on fibrotic livers from mice or humans correlated with histopathology results. Ex vivo biodistribution and ARG revealed that [18F]TZ-Z09591 binding in the liver was increased in fibrotic livers (p = 0.02) and corresponded to binding in fibrotic scars. CONCLUSIONS: Our study highlights [18F]TZ-Z09591 as a specific tracer for fibrogenic cells in the fibrotic liver, thus offering the potential to assess fibrogenesis clearly.

4.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298967

ABSTRACT

Pathological fibrosis of the liver is a landmark feature in chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Diagnosis and assessment of progress or treatment efficacy today requires biopsy of the liver, which is a challenge in, e.g., longitudinal interventional studies. Molecular imaging techniques such as positron emission tomography (PET) have the potential to enable minimally invasive assessment of liver fibrosis. This review will summarize and discuss the current status of the development of innovative imaging markers for processes relevant for fibrogenesis in liver, e.g., certain immune cells, activated fibroblasts, and collagen depositions.


Subject(s)
Molecular Imaging/trends , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Alarmins/metabolism , Animals , Aquaporins/analysis , Collagen/analysis , Contrast Media , Cytokines/metabolism , Elasticity Imaging Techniques/methods , Endopeptidases/analysis , Fatty Acids/metabolism , Fibroblasts/chemistry , Fibroblasts/ultrastructure , Fluorine Radioisotopes , Gallium Radioisotopes , Hepatic Stellate Cells/chemistry , Hepatic Stellate Cells/ultrastructure , Hepatocytes/metabolism , Humans , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Membrane Proteins/analysis , Mice , Molecular Imaging/methods , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals , Rats , Receptors, CCR2/analysis , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...