Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(7): e2308901121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315843

ABSTRACT

Global warming increases available sensible and latent heat energy, increasing the thermodynamic potential wind intensity of tropical cyclones (TCs). Supported by theory, observations, and modeling, this causes a shift in mean TC intensity, which tends to manifest most clearly at the greatest intensities. The Saffir-Simpson scale for categorizing damage based on the wind intensity of TCs was introduced in the early 1970s and remains the most commonly used metric for public communication of the level of wind hazard that a TC poses. Because the scale is open-ended and does not extend beyond category 5 (70 m/s windspeed or greater), the level of wind hazard conveyed by the scale remains constant regardless of how far the intensity extends beyond 70 m/s. This may be considered a weakness of the scale, particularly considering that the destructive potential of the wind increases exponentially. Here, we consider how this weakness becomes amplified in a warming world by elucidating the past and future increases of peak wind speeds in the most intense TCs. A simple extrapolation of the Saffir-Simpson scale is used to define a hypothetical category 6, and we describe the frequency of TCs, both past and projected under global warming, that would fall under this category. We find that a number of recent storms have already achieved this hypothetical category 6 intensity and based on multiple independent lines of evidence examining the highest simulated and potential peak wind speeds, more such storms are projected as the climate continues to warm.

2.
Nat Commun ; 15(1): 1318, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388495

ABSTRACT

A comprehensive understanding of human-induced changes to rainfall is essential for water resource management and infrastructure design. However, at regional scales, existing detection and attribution studies are rarely able to conclusively identify human influence on precipitation. Here we show that anthropogenic aerosol and greenhouse gas (GHG) emissions are the primary drivers of precipitation change over the United States. GHG emissions increase mean and extreme precipitation from rain gauge measurements across all seasons, while the decadal-scale effect of global aerosol emissions decreases precipitation. Local aerosol emissions further offset GHG increases in the winter and spring but enhance rainfall during the summer and fall. Our results show that the conflicting literature on historical precipitation trends can be explained by offsetting aerosol and greenhouse gas signals. At the scale of the United States, individual climate models reproduce observed changes but cannot confidently determine whether a given anthropogenic agent has increased or decreased rainfall.

3.
Proc Natl Acad Sci U S A ; 121(4): e2315330121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38227661

ABSTRACT

We demonstrate an indirect, rather than direct, role of quasi-resonant amplification of planetary waves in a summer weather extreme. We find that there was an interplay between a persistent, amplified large-scale atmospheric circulation state and soil moisture feedbacks as a precursor for the June 2021 Pacific Northwest "Heat Dome" event. An extended resonant planetary wave configuration prior to the event created an antecedent soil moisture deficit that amplified lower atmospheric warming through strong nonlinear soil moisture feedbacks, favoring this unprecedented heat event.

4.
Sci Adv ; 9(14): eadf0259, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37027466

ABSTRACT

Several pathways for how climate change may influence the U.S. coastal hurricane risk have been proposed, but the physical mechanisms and possible connections between various pathways remain unclear. Here, future projections of hurricane activity (1980-2100), downscaled from multiple climate models using a synthetic hurricane model, show an enhanced hurricane frequency for the Gulf and lower East coast regions. The increase in coastal hurricane frequency is driven primarily by changes in steering flow, which can be attributed to the development of an upper-level cyclonic circulation over the western Atlantic. The latter is part of the baroclinic stationary Rossby waves forced mainly by increased diabatic heating in the eastern tropical Pacific, a robust signal across the multimodel ensemble. Last, these heating changes also play a key role in decreasing wind shear near the U.S. coast, further aggravating coastal hurricane risk enhanced by the physically connected steering flow changes.

5.
Nat Commun ; 13(1): 3418, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008390

ABSTRACT

Climate change is already increasing the severity of extreme weather events such as with rainfall during hurricanes. But little research to date investigates if, and to what extent, there are social inequalities in climate change-attributed extreme weather event impacts. Here, we use climate change attribution science paired with hydrological flood models to estimate climate change-attributed flood depths and damages during Hurricane Harvey in Harris County, Texas. Using detailed land-parcel and census tract socio-economic data, we then describe the socio-spatial characteristics associated with these climate change-induced impacts. We show that 30 to 50% of the flooded properties would not have flooded without climate change. Climate change-attributed impacts were particularly felt in Latina/x/o neighborhoods, and especially so in Latina/x/o neighborhoods that were low-income and among those located outside of FEMA's 100-year floodplain. Our focus is thus on climate justice challenges that not only concern future climate change-induced risks, but are already affecting vulnerable populations disproportionately now.


Subject(s)
Cyclonic Storms , Climate Change , Floods , Hydrology , Socioeconomic Factors
7.
Nat Commun ; 13(1): 1905, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414063

ABSTRACT

The 2020 North Atlantic hurricane season was one of the most active on record, causing heavy rains, strong storm surges, and high winds. Human activities continue to increase the amount of greenhouse gases in the atmosphere, resulting in an increase of more than 1 °C in the global average surface temperature in 2020 compared to 1850. This increase in temperature led to increases in sea surface temperature in the North Atlantic basin of 0.4-0.9 °C during the 2020 hurricane season. Here we show that human-induced climate change increased the extreme 3-hourly storm rainfall rates and extreme 3-day accumulated rainfall amounts during the full 2020 hurricane season for observed storms that are at least tropical storm strength (>18 m/s) by 10 and 5%, respectively. When focusing on hurricane strength storms (>33 m/s), extreme 3-hourly rainfall rates and extreme 3-day accumulated rainfall amounts increase by 11 and 8%, respectively.


Subject(s)
Cyclonic Storms , Climate Change , Humans , Seasons , Temperature , Wind
8.
Philos Trans A Math Phys Eng Sci ; 379(2195): 20190542, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33641464

ABSTRACT

A large number of recent studies have aimed at understanding short-duration rainfall extremes, due to their impacts on flash floods, landslides and debris flows and potential for these to worsen with global warming. This has been led in a concerted international effort by the INTENSE Crosscutting Project of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology Panel. Here, we summarize the main findings so far and suggest future directions for research, including: the benefits of convection-permitting climate modelling; towards understanding mechanisms of change; the usefulness of temperature-scaling relations; towards detecting and attributing extreme rainfall change; and the need for international coordination and collaboration. Evidence suggests that the intensity of long-duration (1 day+) heavy precipitation increases with climate warming close to the Clausius-Clapeyron (CC) rate (6-7% K-1), although large-scale circulation changes affect this response regionally. However, rare events can scale at higher rates, and localized heavy short-duration (hourly and sub-hourly) intensities can respond more strongly (e.g. 2 × CC instead of CC). Day-to-day scaling of short-duration intensities supports a higher scaling, with mechanisms proposed for this related to local-scale dynamics of convective storms, but its relevance to climate change is not clear. Uncertainty in changes to precipitation extremes remains and is influenced by many factors, including large-scale circulation, convective storm dynamics andstratification. Despite this, recent research has increased confidence in both the detectability and understanding of changes in various aspects of intense short-duration rainfall. To make further progress, the international coordination of datasets, model experiments and evaluations will be required, with consistent and standardized comparison methods and metrics, and recommendations are made for these frameworks. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

9.
Nature ; 563(7731): 339-346, 2018 11.
Article in English | MEDLINE | ID: mdl-30429550

ABSTRACT

There is no consensus on whether climate change has yet affected the statistics of tropical cyclones, owing to their large natural variability and the limited period of consistent observations. In addition, projections of future tropical cyclone activity are uncertain, because they often rely on coarse-resolution climate models that parameterize convection and hence have difficulty in directly representing tropical cyclones. Here we used convection-permitting regional climate model simulations to investigate whether and how recent destructive tropical cyclones would change if these events had occurred in pre-industrial and in future climates. We found that, relative to pre-industrial conditions, climate change so far has enhanced the average and extreme rainfall of hurricanes Katrina, Irma and Maria, but did not change tropical cyclone wind-speed intensity. In addition, future anthropogenic warming would robustly increase the wind speed and rainfall of 11 of 13 intense tropical cyclones (of 15 events sampled globally). Additional regional climate model simulations suggest that convective parameterization introduces minimal uncertainty into the sign of projected changes in tropical cyclone intensity and rainfall, which allows us to have confidence in projections from global models with parameterized convection and resolution fine enough to include tropical cyclones.


Subject(s)
Cyclonic Storms/statistics & numerical data , Global Warming/statistics & numerical data , Human Activities/statistics & numerical data , Tropical Climate , Computer Simulation , Human Activities/trends , Probability , Rain , Uncertainty , Wind
10.
Science ; 350(6267): 1482-3, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26680187
12.
Proc Natl Acad Sci U S A ; 110(1): 26-33, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23197824

ABSTRACT

We perform a multimodel detection and attribution study with climate model simulation output and satellite-based measurements of tropospheric and stratospheric temperature change. We use simulation output from 20 climate models participating in phase 5 of the Coupled Model Intercomparison Project. This multimodel archive provides estimates of the signal pattern in response to combined anthropogenic and natural external forcing (the fingerprint) and the noise of internally generated variability. Using these estimates, we calculate signal-to-noise (S/N) ratios to quantify the strength of the fingerprint in the observations relative to fingerprint strength in natural climate noise. For changes in lower stratospheric temperature between 1979 and 2011, S/N ratios vary from 26 to 36, depending on the choice of observational dataset. In the lower troposphere, the fingerprint strength in observations is smaller, but S/N ratios are still significant at the 1% level or better, and range from three to eight. We find no evidence that these ratios are spuriously inflated by model variability errors. After removing all global mean signals, model fingerprints remain identifiable in 70% of the tests involving tropospheric temperature changes. Despite such agreement in the large-scale features of model and observed geographical patterns of atmospheric temperature change, most models do not replicate the size of the observed changes. On average, the models analyzed underestimate the observed cooling of the lower stratosphere and overestimate the warming of the troposphere. Although the precise causes of such differences are unclear, model biases in lower stratospheric temperature trends are likely to be reduced by more realistic treatment of stratospheric ozone depletion and volcanic aerosol forcing.


Subject(s)
Atmosphere , Climate Change , Human Activities , Models, Theoretical , Temperature , Computer Simulation , Geography , Humans , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...