Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Small ; : e2405550, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240003

ABSTRACT

The exploration of new properties and functionality of covalent organic frameworks (COFs) rely mostly on the covalent modification of the starting building blocks or linkages. Noncovalent forces that guide the assembly and adhesion of layers to develop two-dimensional (2D) COFs and improve their bulk properties and functionalities, however, are rarely explored. Herein, the "conformational lock" (CL) effect in 2D hydrazine-linked COFs with intralayer F-H interaction is discovered and regulated to stabilize interlayer adhesion and develop a facile strategy to increase their stability, promote selectivity and efficiency in reactive singlet oxygen (1O2)-triggered photocatalytic transformation when acting as photocatalysts. The CL strategy endows the fluorinated COFs with an efficient intersystem crossing process for 1O2 generation and strong interlayer π-π stacking interaction. The 4F-COF with the strongest F-H noncovalent interaction exhibits the highest photocatalytic conversion and selectivity (exceeding 98%) in typical 1O2-dependent transformations, even over 7 continuous photocatalytic cycles. This work demonstrates that promoting intralayer noncovalent interaction in 2D-COFs can impart high photocatalytic activity and stability, and would vigorously inspire their developments in heterogeneous catalysis.

2.
J Am Chem Soc ; 146(36): 25361-25370, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39189853

ABSTRACT

Metal-halogen exchange reactions are fundamental processes in chemistry that transform organic halides into organometallic reagents. However, using these reactions to build intricate structures in a cascade manner, especially in a catalytic mode, has been a challenge. In this study, we introduce a homoleptic organolanthanum catalyst to initiate lanthanum-halogen exchange and intramolecular carbohalogenation. The catalytic pathway can be achieved through metal-halogen exchange and carbometalation, followed by the extraction of halogen atoms from starting materials. Our approach offers a flexible and sustainable way to create a variety of useful compounds, showcasing its potential in chemical synthesis.

3.
Acc Chem Res ; 57(14): 1951-1963, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38953535

ABSTRACT

ConspectusThe halogen-metal exchange reaction is a very powerful method for preparing functionalized organometallic reagents in the fields of organic and organometallic chemistry. Since its inception, significant interest has been directed toward the on-demand development of new halogen-metal exchange reactions, primarily through the upgrading of exchange reagents. The enduring quest for optimal reactivity, superior functional group compatibility, and innovative synthetic applications of exchange reagents remains a fundamental objective. In the past several years, the emergence of some significant discoveries in halogen-metal exchange reactions has proclaimed a renaissance to this field. This Account outlines the latest advances within the domain contributed by the Knochel group, including the main points as follows.The stereoretentive I/Li exchange on stereodefined secondary alkyl iodides was developed for the synthesis of nonstabilized chiral secondary alkyllithium reagents. This provided a straightforward method to access chiral organolithium reagents, which can be trapped by various electrophiles or transmetalated with other metals such as copper, zinc, and magnesium, thus enabling the stereoselective synthesis of a series of functionalized compounds and natural products.Faster halogen-magnesium and halogen-zinc exchanges in toluene were realized using a novel kind of exchange reagent complexed with lithium alkoxide. These highly efficient exchange reactions are much faster than traditional ones and performed in an industrially friendly solvent. These advantages are of great value in practical synthesis, paving the way for new developments in this evolving area.Halogen-lanthanide exchanges and their novel applications in organic synthesis were established. These new exchanges introduced the lanthanide metals into halogen-metal exchange reactions for the first time, thereby opening new avenues in synthetic chemistry. Building on these achievements, a comparative analysis of the exchange reaction rates by kinetic study has quantified the relationship between the electronegativity of metals and the rates of halogen-metal exchanges.Br/Na exchange in continuous flow was achieved using a hexane-soluble exchange reagent, 2-ethylhexylsodium. This approach effectively circumvented the poor solubility of the organosodium reagent, which has proven to be of significant practical value and greatly enhanced the synthetic utility of the organosodium reagent in organic synthesis.These remarkable breakthroughs as mentioned above are fueled mainly by upgrading the exchange reagents, resulting in the development of new halogen-metal exchange reactions and innovative applications in organic synthesis. Given the importance of halogen-metal exchanges in synthetic chemistry, the pursuit of other types of exchange reactions, particularly those involving new metals, will be in continuous demand. This Account provides a timely summary of recent progress and will undoubtedly inspire further advances to drive this research field forward.

4.
Org Lett ; 26(31): 6748-6753, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39077872

ABSTRACT

The regioselective installation of chalcogen atoms into biaryl scaffolds is an important synthetic task due to the great value of chalcogen-containing biaryl derivatives in many fields. Here we undertake this task by developing a regioselective 2,2'-dichalcogenation of 2-bromobiaryls with common chalcogen sources using an organolanthanum-mediated one-pot, two-step protocol. This strategy features high regioselectivity, readily available substrates, transition-metal-free conditions, and performance superior to those of previous methods, thereby demonstrating the unique advantages of organolanthanum reagents in organic synthesis.

5.
Angew Chem Int Ed Engl ; 62(27): e202304173, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37132083

ABSTRACT

Constructing photocatalyst systems to functionalize the inert C-H bonds has attracted extensive research interest. However, purposeful modulation of interfacial charge transfer in heterostructures remains a challenge, as it usually suffers from sluggish kinetics. Reported herein is an easy strategy to construct the heteroatom-induced interface for developing the titanium-organic frameworks (MOF-902) @ thiophene-based covalent triazine frameworks (CTF-Th) nanosheets S-scheme heterojunctions with controllable oxygen vacancies (OVs). Specifically, Ti atoms were first anchored onto the heteroatom site of CTF-Th nanosheets, and then grown into MOF-902 via an interfacial Ti-S linkage, generating OVs. Using in situ X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations, the enhanced interfacial charge separation and transfer induced by moderate OVs in the pre-designed S-scheme nanosheets was validated. The heterostructures exhibited an improved efficiency in photocatalytic C3-acylation of indoles under mild conditions with a yield 8.2 times larger than pristine CTF-Th or MOF-902 and enabled an extended scope of substrates (15 examples). This performance is superior to state-of-the-art photocatalyst and can be retained, without significant loss, after 12 consecutive cycles.

6.
Org Lett ; 25(14): 2543-2547, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37018539

ABSTRACT

We report an efficient one-pot, two-step procedure for the modular synthesis of α-difunctionalized alkynes and trisubstituted allenes by sequential cross-coupling of benzal gem-diacetates with organozinc or -copper reagents in the absence of external transition metals. The intermediacy of propargylic acetates enables the divergent and selective synthesis of these valuable products. This method features its readily accessible substrates, relatively mild conditions, wide scope, and scalability in practical synthesis.

7.
Angew Chem Int Ed Engl ; 60(18): 10409-10414, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33625773

ABSTRACT

A variety of functionalized triarylmethane and 1,1-diarylalkane derivatives were prepared via a transition-metal-free, one-pot and two-step procedure, involving the reaction of various benzal diacetates with organozinc reagents. A sequential cross-coupling is enabled by changing the solvent from THF to toluene, and a two-step SN 1-type mechanism was proposed and evidenced by experimental studies. The synthetic utility of the method is further demonstrated by the synthesis of several biologically relevant molecules, such as an anti-tuberculosis agent, an anti-breast cancer agent, a precursor of a sphingosine-1-phosphate (S1P) receptor modulator, and a FLAP inhibitor.

8.
Angew Chem Int Ed Engl ; 58(44): 15631-15635, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31461206

ABSTRACT

Various aryl- and heteroaryl-substituted 2-bromobiaryls are converted to cyclometalated lanthanum intermediates by reaction with nBu2 LaCl⋅4 LiCl. These resulting lanthanum heterocycles are key intermediates for the facile preparation of functionalized 2,2'-diiodobiaryls, silafluorenes, fluoren-9-ones, phenanthrenes, and their related heterocyclic analogues. X-ray absorption fine structure (XAFS) spectroscopy was used to rationalize the proposed structures of the involved organolanthanum species.

9.
Angew Chem Int Ed Engl ; 58(12): 4046-4050, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30664831

ABSTRACT

Fast I/Sm and Br/Sm exchanges take place when various aromatic or heterocyclic iodides and bromides are treated with nBu2 SmCl⋅4 LiCl and nBu3 Sm⋅5 LiCl, respectively. The resulting organosamarium reagents were efficiently quenched with aldehydes, ketones, and imines. Also, they undergo acylations when treated with N,N-dimethylamides leading to ketones. The rate of the Br/Sm exchange for a typical aryl bromide was determined and found to be 8.5×105 faster than the Br/Mg exchange, indicating that the rate of a metal-exchange is related to the ionic character of the carbon-metal bond and to the metal electronegativity.

10.
Chemistry ; 25(11): 2695-2703, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30230067

ABSTRACT

This Minireview describes the scope of the halogen-magnesium exchange. It shows that the use of the turbo-Grignard reagent (iPrMgCl⋅LiCl) greatly enhances the rate of the Br- and I-Mg exchange. Furthermore, this magnesium reagent allows the performance of a fast sulfoxide-magnesium exchange. Also, the use of sBuMgOR⋅LiOR (R=2-ethylhexyl) enables a Br-Mg exchange in toluene leading to various Grignard reagents in toluene. Additionally, the new exchange reagent sBu2 Mg⋅2 LiOR (R=2-ethylhexyl) further increases the rate of the halogen-magnesium exchange allowing one to perform a chlorine-magnesium exchange for aromatic chlorides bearing an ortho-methoxy substituent in toluene.

11.
Dalton Trans ; 47(36): 12540-12545, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-29756145

ABSTRACT

Efficient synthesis and structure elucidation of carbon-calcium σ-bonded compounds are of remarkable interest and importance in organometallic chemistry of the heavier s-block metals. In this paper, we report that styryl and biphenyl calcium complexes with well-defined structures can be facilely obtained via metathesis reaction between their corresponding dilithio compound and calcium iodide. Single-crystal X-ray structural analysis of these calcium complexes revealed their unique iodide-bridged or dicalcium-bridged structures. Their reactivity toward nitrous oxide was disclosed.

12.
Oncol Lett ; 15(2): 1639-1645, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29399192

ABSTRACT

The aim of the present study was to prove that a mouse model closely simulates human oral cancer progression by comparing the expression levels of transforming growth factor (TGF)-ß1, E-cadherin, N-cadherin, tumor protein (TP)53, RB1 inducible coiled-coil (RB1CC)1 and hypoxia inducible factor (HIF)-1α at different stages of oral squamous cell carcinoma (OSCC) in humans and mice. The expression levels of TGF-ß1, E-cadherin, N-cadherin, TP53, RB1CC1, and HIF-1α were detected by immunohistochemical staining in normal oral mucosa, oral mucosa dysplasia, OSCC primary tumor and carcinoma tissues from lymph node metastases. Tissue samples were obtained from human specimens and the Balb/c mouse model of lymphatic metastases oral carcinoma, induced by 4-nitroquinoline-1-oxide in drinking water. The results indicated no significant differences in the expression levels of TGF-ß1, E-cadherin, N-cadherin, TP53, RB1CC1 and HIF-1α between humans and mice, at any stage of OSCC examined (P>0.05). The expression of TGF-ß1, N-cadherin, TP53 and RB1CC1 increased in different stages of OSCC in both humans and mice. The expression of E-cadherin decreased from normal oral mucosa to OSCC, and increased in lymph node metastases in both human and mouse samples. The expression of HIF-1α increased from normal oral mucosa to OSCC, and decreased in lymph node metastases in both human and mouse samples. Additionally, the expression of p53 was positively correlated with that of RB1CC1 in human and mouse samples (r=0.971, P=0.029; r=0.97, P=0.03). Overall, the similar expression of multiple molecules in both human and mouse carcinoma prove that the mouse model of lymphatic metastases from oral carcinoma established in the present study may closely mimic human oral cancer.

13.
Int J Clin Exp Pathol ; 11(7): 3328-3337, 2018.
Article in English | MEDLINE | ID: mdl-31949709

ABSTRACT

OBJECTIVES: Heterogeneous cells appear in multiple organs during the same time period as the primary lesion of some tumors is clinically detected. These heterogeneous cells are also known as disseminated tumor cells (DTCs). However, the characteristics of DTCs that disseminate during oral carcinogenesis remain unclear. MATERIALS AND METHODS: A mouse 4NQO model of lymph node metastasis in oral squamous cell carcinoma was established. Tissue samples of the tongue, bone marrow and submandibular lymph node were collected. Five stages (stage 0~stage IV) of carcinogenesis in each experimental animal were classified by two pathologists. After immunohistochemical staining of cytokeratin, the DTCs were isolated from bone marrow samples (stage II) by the laser capture microdissection (LCM) technique during oral carcinogenesis. Genomic amplification of bone marrow DTCs was performed, and homozygous deletion of the RB1CC1 gene was analyzed. After confirming the presence of disseminated tumor cells in stage II bone marrow samples, a comprehensive study among various stages of lymph node tissue was conducted using the same method. RESULTS: DTCs that spread from the primary tumor were discovered in stage II bone marrow samples and in stage I, stage II and stage III submandibular lymph node samples through immunohistochemical staining. These spreading cells had different levels of homozygous exon deletion in the RB1CC1 and TP53 genes. CONCLUSION: Early spreading of epithelial cells may occur during the carcinogenesis of oral cancer. DTCs of oral carcinoma may show different chromosome aberrations from matched primary tumor cells.

14.
Chem Sci ; 8(10): 6852-6856, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29147510

ABSTRACT

The chemistry of rare-earth carbene and alkylidene complexes including their synthesis, structure and reaction is a challenging issue because of their high reactivity (or instability) and the lack of synthetic methods. In this work, we report the first synthesis of the bridged bis-alkylidene complexes which feature a 2-butene-1,1,4,4-tetraanion and four Sc-C(sp3) bonds by the reaction of 1,4-dilithio-1,3-butadienes with ScCl3. This reaction proceeds via two key intermediates: an isolable scandacyclopentadiene and a proposed scandacyclopropene. The scandacyclopentadiene undergoes ß,ß'-C-C bond cleavage to generate the scandacyclopropene, which then dimerizes to afford the bridged bis-alkylidene complex via a cooperative double metathesis reaction. Reaction chemistry study of the bridged bis-alkylidene complex reveals their ligand-based reduction reactivity towards different oxidants such as hexachloroethane, disulfide and cyclooctatetraene.

15.
Angew Chem Int Ed Engl ; 56(31): 9188-9192, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28593729

ABSTRACT

The structure elucidation of heavy Grignard reagents (RAeX, Ae=Ca, Sr, and Ba, X=halides) has been greatly strived after, mainly because of their inaccessibility and remarkable instability. The synthesis of a series of butadienylcalcium compounds is presented, including 1-calcio-4-lithio-1,3-butadiene, 1,4-dicalcio-1,3-butadiene, and a Ca4 [O] inverse crown ether complex, via the reaction between 1,4-dilithio-1,3-butadienes and calcium iodide in THF. Single-crystal X-ray analysis of these unprecedented heavy Grignard reagents revealed unique structural characteristics and bonding modes. Preliminary reaction chemistry was investigated. This study provides a novel class of alkenyl heavy Grignard reagents and a useful synthetic strategy for otherwise unavailable reactive organometallic compounds.

16.
J Org Chem ; 80(17): 8758-62, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26270413

ABSTRACT

The reaction chemistry between 1,4-dilithio-1,3-butadienes (dilithio reagents for short) and PhSiH3 has been investigated. Direct substitution of two hydride ions from PhSiH3 with the dilithio reagents led to multisubstituted siloles (silacyclopentadienes) in diethyl ether solution, with the concomitant generation of LiH. When THF was used as the solvent, the reaction between PhSiH3 and 1,4-bis(silyl) dilithio reagents afforded cis-3-silacyclopentenes stereoselectively. Experimental results demonstrated that reactive LiH was generated in situ in the reaction system. Formal syn addition of LiH to silacyclopentadiene intermediates would afford silacyclopentenes, most likely via pentavalent organosilicates.

17.
Nat Commun ; 5: 4508, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-25047678

ABSTRACT

Organomagnesium compounds (Grignard reagents) are among the most useful organometallic reagents and have greatly accelerated the advancement of synthetic chemistry and related sciences. Nevertheless, heavy Grignard reagents based on the metals calcium, strontium or barium are not widely used, mainly due to their rather inert heavy alkaline-earth metals and extremely high reactivity of their corresponding Grignard-type reagents. Here we report the generation and reaction chemistry of butadienyl heavy Grignard reagents whose extremely high reactivity is successfully tamed. Facile synthesis of perfluoro-π-extended pentalene and naphthalene derivatives is realized by the in situ generated heavy Grignard reagents via intramolecular C-F/C-H bond cleavage. These obtained perfluorodibenzopentalene and perfluorodinaphthopentalene derivatives show low-lying LUMO levels, with one being the lowest value so far among all pentalene derivatives. Our results set an exciting example for the meaningful synthetic application of heavy Grignard reagents.

SELECTION OF CITATIONS
SEARCH DETAIL