Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Clin Interv Aging ; 19: 1067-1078, 2024.
Article in English | MEDLINE | ID: mdl-38911674

ABSTRACT

Postoperative cognitive dysfunction (POCD) is a neurological complication associated with surgery and anesthesia that is commonly observed in older patients, and it can significantly affect patient prognosis and survival. Therefore, predicting and preventing POCD is important. Regional cerebral oxygen saturation (rSO2) reflects cerebral perfusion and oxygenation, and decreased intraoperative cerebral oxygen saturation has been reported to increase the risk of POCD. In this review, we elucidated the important relationship between the decline in rSO2 and risk of POCD in older patients. We also emphasized the importance of monitoring rSO2 during surgery to predict and prevent adverse perioperative cognitive outcomes. The findings reveal that incorporating intraoperative rSO2 monitoring into clinical practice has potential benefits, such as protecting cognitive function, reducing perioperative adverse outcomes, and ultimately improving the overall quality of life of older adults.


Subject(s)
Cerebrovascular Circulation , Postoperative Cognitive Complications , Humans , Postoperative Cognitive Complications/etiology , Aged , Oxygen Saturation , Brain/metabolism , Quality of Life , Oxygen/metabolism , Oxygen/blood , Cognitive Dysfunction/etiology
2.
Opt Lett ; 49(12): 3328-3331, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875612

ABSTRACT

The performance of high-speed intensity modulation direct detection (IM-DD) transmissions is severely degraded due to the occurrence of multipath interference (MPI), especially when a higher-order modulation format is utilized. Here, we propose and demonstrate, for the first time to the best of our knowledge, that a Nyquist subcarrier modulation (Nyquist-SCM) format inherently exhibits resistance to the MPI. We experimentally evaluate the MPI tolerance by transmitting 56 Gbit/s PAM-4 signals and Nyquist-SCM 16QAM signals over the 2 km standard single-mode fiber (SSMF) when the C-band semiconductor laser with a linewidth of 1.7 MHz is utilized. In comparison with the PAM-4 format, the Nyquist-SCM 16QAM format can lead to an enhanced MPI tolerance of 4 dB at the KP4-FEC threshold of BER = 2 × 10-4. In addition, even with the help of MPI mitigation for the PAM-4 signals based on two newly reported methods, the utilization of Nyquist-SCM 16QAM signal can still guarantee an improved MPI tolerance of 1 dB.

3.
Opt Express ; 32(6): 9245-9254, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571163

ABSTRACT

As for the photonic interconnection based on the multiple-lane intensity modulation direct detection (IM-DD) transmission, both intra-channel inter-symbol-interference (ISI) originating from bandwidth constraint, and inter-channel performance discrepancy emerging from inter-channel component differences are the major bottleneck for the throughput enhancement. Here, we propose a pairwise Tomlinson-Harshima precoding (P-THP) scheme, in order to simultaneously deal with both intra-channel ISI and inter-channel performance discrepancy. The effective function of the proposed P-THP scheme is experimentally evaluated by transmitting 4-channel 81-GBaud PAM4 signals over 2 km standard single-mode fiber (SSMF). Compared with the conventional scheme with only applying THP on individual wavelength channel, the required optical received power (ROP) under the back-to-back (B2B) transmission can be reduced by 0.75∼1 dB with the help of proposed P-THP in different experimental component configurations, at the 7% hard decision forward error correction (HD-FEC) threshold of BER = 3.8 × 10-3. After the 2 km SSMF transmission, only the use of proposed P-THP can guarantee to reach the designated HD-FEC threshold, leading to a net rate of >600 Gbit/s.

4.
Brain Res ; 1830: 148821, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38401770

ABSTRACT

Neurocognitive disorders, such as Alzheimer's disease, vascular dementia, and postoperative cognitive dysfunction, are non-psychiatric brain syndromes in which a significant decline in cognitive function causes great trauma to the mental status of the patient. The lack of effective treatments for neurocognitive disorders imposes a considerable burden on society, including a substantial economic impact. Over the past few decades, the identification of resveratrol, a natural plant compound, has provided researchers with an opportunity to formulate novel strategies for the treatment of neurocognitive disorders. This is because resveratrol effectively protects the brain of those with neurocognitive disorders by targeting some mechanisms such as inflammation and oxidative stress. This article reviews the status of recent research investigating the use of resveratrol for the treatment of different neurocognitive disorders. By examining the possible mechanisms of action of resveratrol and the shared mechanisms of different neurocognitive disorders, treatments for neurocognitive disorders may be further clarified.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia, Vascular , Humans , Resveratrol/therapeutic use , Cognitive Dysfunction/drug therapy , Alzheimer Disease/drug therapy , Dementia, Vascular/drug therapy , Brain
5.
Int J Biol Sci ; 20(2): 585-605, 2024.
Article in English | MEDLINE | ID: mdl-38169591

ABSTRACT

Sirtuin 5 (SIRT5), localized in the mitochondria, has been identified as a protein desuccinylase and demalonylase in the mitochondria since the depletion of SIRT5 boosted the global succinylation and malonylation of mitochondrial proteins. We investigated the role of SIRT5 in diabetic cardiomyopathy (DCM) and identified the mechanism regarding lysine demalonylation in this process. Wild-type and SIRT5 knockout mice were induced with DCM, and primary cardiomyocytes and cardiac fibroblasts extracted from wild-type and SIRT5 knockout mice were subjected to high glucose (HG). SIRT5 deficiency exacerbated myocardial injury in DCM mice, aggravated HG-induced oxidative stress and mitochondrial dysfunction in cardiomyocytes, and intensified cardiomyocyte senescence, pyroptosis, and DNA damage. DCM-induced SIRT5 loss diminished glutathione S-transferase P (GSTP1) protein stability, represented by significantly increased lysine malonylation (Mal-Lys) modification of GSTP1. SIRT5 overexpression alleviated DCM-related myocardial injury, which was reversed by GSTP1 knockdown. Reduced SIRT5 transcription in DCM resulted from the downregulation of SPI1. SPI1 promoted the transcription of SIRT5, thereby ameliorating DCM-associated myocardial injury. However, SIRT5 deletion resulted in a significant reversal of the protective effect of SPI1. These observations suggest that SPI1 activates SIRT5 transcriptionally to mediate GSTP1 Mal-Lys modification and protein stability, thus ameliorating DCM-associated myocardial injury.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Sirtuins , Animals , Mice , Diabetic Cardiomyopathies/genetics , Glutathione Transferase , Lysine/metabolism , Mice, Knockout , Myocytes, Cardiac/metabolism , Pyroptosis , Sirtuins/genetics , Sirtuins/metabolism
6.
Eur J Contracept Reprod Health Care ; 29(2): 76-78, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38284985

ABSTRACT

CASE: Intrauterine device (IUD) is used worldwide as an effective contraceptive method, but the migration of IUD is a serious complication. We report the case of IUD migration leading to bladder calculus formation and a minimally invasive transurethral surgical approach was performed for treatment. Holmium laser was used to break up the bladder calculus and cut through the bladder mucosa where the IUD was attached, finally the IUD was removed through the urethra. This minimally invasive procedure is a safe and effective treatment for IUD migration, and similar cases have not been reported in the literature. CONCLUSION: That the secondary bladder calculus were smashed by intense pulse mode of holmium laser, and the bladder tissue around the attached IUD was opened by cutting mode of holmium laser, and finally the IUD was completely removed from urethra, this surgical method is safe and effective, and there is no case report on IUD removal of transurethral cystoscope in the literature.

7.
Int J Biol Macromol ; 258(Pt 2): 129052, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161012

ABSTRACT

Gut microbial dysbiosis has always served as a potential factor in the occurrence and development of liver fibrosis. Liver and gut microflora can regulate each other through the gut-liver axis. In this study, the 16S rRNA and RNA-seq were chosen to sequence gut microbiota alteration and liver differentially expressed genes (DEGs) in carbon tetrachloride (CCl4) included-liver fibrosis mice, and analyze the correlations between gut microbiota constituents and DEGs. Results indicated that, CCl4 significantly increased the abundance of Desulfobactera in the phylum level, destroyed gut microbiota balance in the genus levels, especially Enterorhabdus and Desulfovibrio. Through analysis, 1416 genes were found differentially expressed in mice liver tissue in the CCl4 Group, compared with the Control Group; and the DEGs were mainly involved in the lipid metabolic process and immune system process. The correlation analysis revealed that the relative abundance of microbiota phylum (Desulfobactera) and genus (Enterorhabdus and Desulfovibrio) was negatively correlated with the metabolism related genes, while positively correlated with immune-related genes and the genes enriched in PI3K-Akt signaling pathway. To sum up, CCl4 can partially regulate gene expression in metabolism, immune response and the PI3K/Akt pathway, and further maintain the stability of the gut environment in liver fibrosis mice.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Gastrointestinal Microbiome/genetics , Dysbiosis/metabolism , RNA, Ribosomal, 16S/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Liver/metabolism , Liver Cirrhosis/pathology , Immunologic Factors/metabolism
8.
BMC Anesthesiol ; 23(1): 366, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37946114

ABSTRACT

The latest clinical trials have reported conflicting outcomes regarding the effectiveness of xenon anesthesia in preventing postoperative neurocognitive dysfunction; thus, this study assessed the existing evidence. We searched the PubMed, Embase, Cochrane Library, and Web of Science databases from inception to April 9, 2023, for randomized controlled trials of xenon anesthesia in postoperative patients. We included English-language randomized controlled studies of adult patients undergoing surgery with xenon anesthesia that compared its effects to those of other anesthetics. Duplicate studies, pediatric studies, and ongoing clinical trials were excluded. Nine studies with 754 participants were identified. A forest plot revealed that the incidence of postoperative neurocognitive dysfunction did not differ between the xenon anesthesia and control groups (P = 0.43). Additionally, xenon anesthesia significantly shortened the emergence time for time to opening eyes (P < 0.001), time to extubation (P < 0.001), time to react on demand (P = 0.01), and time to time and spatial orientation (P = 0.04). However, the Aldrete score significantly increased with xenon anesthesia (P = 0.005). Postoperative complications did not differ between the anesthesia groups. Egger's test for bias showed no small-study effect, and a trim-and-fill analysis showed no apparent publication bias. In conclusion, xenon anesthesia probably did not affect the occurrence of postoperative neurocognitive dysfunction. However, xenon anesthesia may effectively shorten the emergence time of certain parameters without adverse effects.


Subject(s)
Anesthetics , Delirium , Adult , Humans , Child , Xenon/pharmacology , Postoperative Period , Anesthesia, Inhalation/adverse effects , Delirium/chemically induced
9.
Medicine (Baltimore) ; 102(42): e35154, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37861563

ABSTRACT

Septic shock often occurs following critically low blood pressure in patients with sepsis, and is accompanied by a high death rate. Although mitophagy is associated with infection and immune responses, its role in septic shock remains unknown. This study screened effective mitophagy-related genes (MRGs) for medical practice and depicted immune infiltration situations in patients with septic shock. Gene expression profiles of GSE131761 from the Gene Expression Omnibus database were compiled for differential analysis, weighted gene co-expression network analysis, and immune infiltration analysis, while other GSE series were used as validation datasets. A series of validation methods were used to verify the robustness of hub genes, while a nomogram and prognosis model were established for medical practice. Six genes were screened via combinations of differentially expressed genes, weighted gene co-expression network analysis, and MRGs. From this, 3 hub genes (MAP1LC3B, ULK1, and CDC37) were chosen for subsequent analysis based on different validation methods. Gene set enrichment analysis showed that leukocyte trans-endothelial migration and the p53 signaling pathway were abnormally activated during septic shock. Immune infiltration analysis indicated that the imbalance of neutrophils and CD4 naive T cells was significantly correlated with septic shock progression. A nomogram was generated based on MAP1LC3B, ULK1, and CDC37, as well as age. The stability of our model was confirmed using a calibration plot. Importantly, patients with septic shock with the 3 highly expressed hub genes displayed worse prognosis than did patients without septic shock. MAP1LC3B, ULK1, and CDC37 are considered hub MRGs in the development of septic shock and could represent promising diagnostic and prognostic biomarkers in blood tissue. The validated hub genes and immune infiltration pattern expand our knowledge on MRG functional mechanisms, which provides guidance and direction for the development of septic shock diagnostic and therapeutic markers.


Subject(s)
Sepsis , Shock, Septic , Humans , Shock, Septic/genetics , Mitophagy/genetics , Genes, Regulator , CD4-Positive T-Lymphocytes
10.
Sci Rep ; 13(1): 17458, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838728

ABSTRACT

The pathological features of Alzheimer's disease are the formation of amyloid plaques and entanglement of nerve fibers. Studies have shown that Cu may be involved in the formation of amyloid plaques. However, their role has been controversial. The aim of this study was to explore the role of Cu in AD. We applied the "R" software for our differential analysis. Differentially expressed genes were screened using the limma package. Copper metabolism-related genes and the intersection set of differential genes with GSE5281 were searched; functional annotation was performed. The protein-protein interaction network was constructed using several modules to analyse the most significant hub genes. The hub genes were then qualified, and a database was used to screen for small-molecule AD drugs. We identified 87 DEGs. gene ontology analysis focused on homeostatic processes, response to toxic substances, positive regulation of transport, and secretion. The enriched molecular functions are mainly related to copper ion binding, molecular function regulators, protein-containing complex binding, identical protein binding and signalling receptor binding. The KEGG database is mainly involved in central carbon metabolism in various cancers, Parkinson's disease and melanoma. We identified five hub genes, FGF2, B2M, PTPRC, CD44 and SPP1, and identified the corresponding small molecule drugs. Our study identified key genes possibly related to energy metabolism in the pathological mechanism of AD and explored potential targets for AD treatment by establishing interaction networks.


Subject(s)
Alzheimer Disease , Gene Expression Profiling , Humans , Entorhinal Cortex/metabolism , Copper/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Plaque, Amyloid/metabolism
11.
Front Cell Neurosci ; 17: 1237641, 2023.
Article in English | MEDLINE | ID: mdl-37711511

ABSTRACT

Spinal cord injury causes varying degrees of motor and sensory function loss. However, there are no effective treatments for spinal cord repair following an injury. Moreover, significant preclinical advances in bioengineering and regenerative medicine have not yet been translated into effective clinical therapies. The spinal cord's poor regenerative capacity makes repairing damaged and lost neurons a critical treatment step. Reprogramming-based neuronal transdifferentiation has recently shown great potential in repair and plasticity, as it can convert mature somatic cells into functional neurons for spinal cord injury repair in vitro and in vivo, effectively halting the progression of spinal cord injury and promoting functional improvement. However, the mechanisms of the neuronal transdifferentiation and the induced neuronal subtypes are not yet well understood. This review analyzes the mechanisms of resident cellular transdifferentiation based on a review of the relevant recent literature, describes different molecular approaches to obtain different neuronal subtypes, discusses the current challenges and improvement methods, and provides new ideas for exploring therapeutic approaches for spinal cord injury.

12.
Clin Cardiol ; 46(12): 1465-1473, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37661458

ABSTRACT

BACKGROUND: Because of the advancement of bioabsorbable polymers and thinner struts, bioabsorbable-polymer sirolimus-eluting stents (BP-SES) with ultrathin struts may be related to superior performance when compared to durable-polymer drug-eluting stents (DP-DES) with thin struts. Nonetheless, the long-term safety of ultrathin BP-SES in acute coronary syndrome (ACS) remains unknown. METHODS: We sought to assess the long-term safety of ultrathin BP-SES in ACS patients, conducting a thorough meta-analysis of all relevant trials drawing a comparison between ultrathin BP-SES and contemporary thin DP-DES. Target lesion failure (TLF), which includes cardiac death (CD), target-vessel myocardial infarction (TV-MI), and clinically driven target lesion revascularization (CD-TLR) was considered the primary endpoint. Multiple databases comprising Embase, MEDLINE, Cochrane Library, and Pubmed were all thoroughly searched. RESULTS: There were seven randomized controlled trials included in our study with 7522 randomized patients with ACS (BP-SES = 3888, DP-DES = 3634). TLF occurred in 371 (9.5% in BP-SES) and 393 (10.8% in DP-DES) patients, respectively, across a 40.7-month weighted mean follow-up, with no statistically significant group differences (risk ratio [RR]: 0.87; 95% confidence interval [CI]: 0.73-1.04; p = .12). Furthermore, no significant differences in cardiac death (RR: 0.96; 95% CI: 0.68-1.35; p = .81), TV-MI (RR: 0.63; 95% CI: 0.36-1.10; p = .10) and CD-TLR (RR: 0.77; 95% CI: 0.46-1.29; p = .32) were detected between two groups. CONCLUSION: During a follow-up of 40.7 months, ultrathin BP-SES and thin DP-DES had a comparable risk of TLF and its individual components (CD, TV-MI, and CD-TLR), indicating that ultrathin BP-SES held at least the same safety and efficiency as thin DP-DES presented in patients with ACS.


Subject(s)
Acute Coronary Syndrome , Coronary Artery Disease , Drug-Eluting Stents , Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Sirolimus , Everolimus , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/surgery , Polymers , Coronary Artery Disease/complications , Absorbable Implants , Treatment Outcome , Myocardial Infarction/etiology , Stents/adverse effects , Death , Percutaneous Coronary Intervention/adverse effects , Prosthesis Design , Randomized Controlled Trials as Topic
13.
Front Neurol ; 14: 1205031, 2023.
Article in English | MEDLINE | ID: mdl-37538253

ABSTRACT

Background: Early neurological deterioration after hematoma evacuation is closely associated with a poor prognosis in patients with intracerebral hemorrhage. However, the relationship between body temperature after hematoma evacuation and early neurological deterioration remains unclear. Therefore, this study aims to explore the possible relationship between body temperature and early neurological deterioration in patients with intracerebral hemorrhage after hematoma evacuation. Methods: We retrospectively collected data from patients with cerebral hemorrhage at our institute between January 2017 and April 2022. The Student's t-test, Mann-Whitney U-test, and χ2 Test and Fisher's exact test were used to analyze the clinical baseline data. A univariate logistic regression model was used to evaluate the association between the body temperature indices and early neurological deterioration. The predictive power was assessed using the area under the Receiver Operating Characteristic (ROC) curve. The secondary outcome was a poor functional outcome. Results: Among 2,726 patients with intracerebral hemorrhage, 308 who underwent hematoma evacuation were included in the present analysis. A total of 82 patients (22.6%) developed early neurological deterioration. Univariate analysis showed that sex (p = 0.041); body temperature at 6 h (p = 0.005), 12 h (p = 0.01), and 24 h (p = 0.008) after surgery; duration of fever (p = 0.008); and fever burden (p < 0.001) were associated with early neurological deterioration. Multivariate logistic regression showed that fever burden was independently associated with early neurological deterioration (OR = 1.055 per °C × hour, 95%CI 1.008-1.103, p = 0.020). ROC showed that fever burden (AUC = 0.590; 95%CI: 0.514-0.666) could predict the occurrence of early neurological deterioration. Conclusion: Fever burden is associated with early neurological deterioration in intracerebral hemorrhage patients undergoing hematoma evacuation. Our findings add to previous evidence on the relationship between the fever burden and the occurrence of early neurological deterioration in patients with intracerebral hemorrhage. Future studies with larger sample sizes are required to confirm these findings.

14.
Biomed Pharmacother ; 165: 115253, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37542855

ABSTRACT

Cardiac hypertrophy is frequently associated with ventricular dysfunction and heart failure. Paeoniflorin, has been widely used to treat cardiovascular dysfunction-related diseases. However, the underlying mechanism has been unclear. Here, we investigated the potential inhibitory effects and mechanism of paeoniflorin on oxidative stress of cardiac hypertrophy induced by angiotensin II (AngII) in vitro. Using MTS assay, qRT-PCR, WGA staining assay, and western blot, different dosages (50-400 µM) of paeoniflorin were utilized to examine the antihypertrophy effects on H9c2 cells. Western blot examination revealed the presence of apoptosis-related proteins Bax, Bcl2, and Cytc, antioxidative stress-related proteins Nrf2, HO-1, SOD, and CAT, and mitophagy-related proteins PINK1 and Parkin. qRT-PCR was used to detect the mRNA expression of Bax, Bcl2, Nrf2, and HO-1. TUNEL, caspase3/9 enzyme viability, and MDA, T-AOC, and superoxide levels were all evaluated using commercial kits.The fluorescent probes DCFH-DA and JC-1 were employed to measure cellular ROS and MMP levels. Nrf2 siRNA was utilized to investigate Nrf2's role in paeoniflorin-treated cardiac hypertrophy. Paeoniflorin dramatically reduced cell section area (CSA) and hypertrophic marker (ANP, BNP) expression while inhibiting oxidative stress by modulating ROS and MDA, CAT, SOD, and T-AOC levels. Furthermore, in AngII-induced cardiomyocyte hypertrophy, paeoniflorin restores H9c2 apoptosis by restoring Bax, Bcl-2 Cyt-C, Caspase 3, and Caspase 9 levels. Paeoniflorin also restored Nrf2/HO-1 and PINK1/Parkin expression, and its anti-AngII activities were mediated by Nrf2, which was regulated by Nrf2 knockdown. In conclusion, Our data confirm that paeoniflorin alleviates cardiac hypertrophy through modulating oxidative stress and Nrf2 signaling pathway in vitro.


Subject(s)
Angiotensin II , NF-E2-Related Factor 2 , Oxidative Stress , Animals , Rats , Angiotensin II/adverse effects , Apoptosis , Apoptosis Regulatory Proteins/metabolism , bcl-2-Associated X Protein/metabolism , Cardiomegaly/metabolism , Myocytes, Cardiac , NF-E2-Related Factor 2/metabolism , Protein Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction , Superoxide Dismutase/metabolism
15.
Int J Mol Sci ; 24(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37569858

ABSTRACT

Soybean is one of the most widely grown oilseed crops worldwide. Several unfavorable factors, including salt and salt-alkali stress caused by soil salinization, affect soybean yield and quality. Therefore, exploring the molecular basis of salt tolerance in plants and developing genetic resources for genetic breeding is important. Sucrose non-fermentable protein kinase 1 (SnRK1) belongs to a class of Ser/Thr protein kinases that are evolutionarily highly conserved direct homologs of yeast SNF1 and animal AMPKs and are involved in various abiotic stresses in plants. The GmPKS4 gene was experimentally shown to be involved with salinity tolerance. First, using the yeast two-hybrid technique and bimolecular fluorescence complementation (BiFC) technique, the GmSNF1 protein was shown to interact with the GmPKS4 protein. Second, the GmSNF1 gene responded positively to salt and salt-alkali stress according to qRT-PCR analysis, and the GmSNF1 protein was localized in the nucleus and cytoplasm using subcellular localization assay. The GmSNF1 gene was then heterologously expressed in yeast, and the GmSNF1 gene was tentatively identified as having salt and salt-alkali tolerance function. Finally, the salt-alkali tolerance function of the GmSNF1 gene was demonstrated by transgenic Arabidopsis thaliana, soybean hairy root complex plants overexpressing GmSNF1 and GmSNF1 gene-silenced soybean using VIGS. These results indicated that GmSNF1 might be useful in genetic engineering to improve plant salt and salt-alkali tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Soybean Proteins/genetics , Glycine max/metabolism , Alkalies/metabolism , Saccharomyces cerevisiae/metabolism , Plant Breeding , Stress, Physiological/genetics , Arabidopsis/metabolism , Protein Kinases/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Arabidopsis Proteins/genetics
16.
Mol Neurobiol ; 60(12): 6883-6895, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37515671

ABSTRACT

The pathology of spinal cord injury (SCI), including primary and secondary injuries, primarily involves hemorrhage, ischemia, edema, and inflammatory responses. Cell transplantation has been the most promising treatment for SCI in recent years; however, its specific molecular mechanism remains unclear. In this study, bioinformatics analysis verified by experiment was used to elucidate the hub genes associated with SCI and to discover the underlying molecular mechanisms of cell intervention. GSE46988 data were downloaded from the Gene Expression Omnibus dataset. In our study, differentially expressed genes (DEGs) were reanalyzed using the "R" software (R v4.2.1). Functional enrichment and protein-protein interaction network analyses were performed, and key modules and hub genes were identified. Network construction was performed for the hub genes and their associated miRNAs. Finally, a semi-quantitative analysis of hub genes and pathways was performed using quantitative real-time polymerase chain reaction. In total, 718 DEGs were identified, mainly enriched in immune and inflammation-related functions. We found that Cd4, Tp53, Rac2, and Akt3 differed between vehicle and transplanted groups, suggesting that these genes may play an essential role in the transplantation of olfactory ensheathing cells, while a toll-like receptor signaling pathway was significantly enriched in Gene set enrichment analysis, and then, the differences were statistically significant by experimentally verifying the expression of their associated molecules (Tlr4, Nf-κb, Ikkß, Cxcl2, and Tnf-α). In addition, we searched for upstream regulatory molecules of these four central genes and constructed a regulatory network. This study is the first to construct a regulatory network for olfactory ensheathing cell transplantation in treating SCI, providing a new idea for SCI cell therapy.


Subject(s)
Spinal Cord Injuries , Humans , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Cell- and Tissue-Based Therapy , Computational Biology , I-kappa B Kinase , Inflammation
17.
Balkan Med J ; 40(5): 333-343, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37350700

ABSTRACT

Background: The main pathological feature of diabetic cardiomyopathy (DCM) caused by diabetes mellitus is myocardial fibrosis. According to recent studies in cardiology, it has been suggested that spermidine (SPD) has cardioprotective properties. Aims: To explore the role and mechanism of SPD in alleviating myocardial fibrosis of DCM. Study Design: In vivo and in vitro study. Methods: Type 2 diabetic mice and primary neonatal mouse cardiac fibroblasts (CFs) were selected. Measurements of serum-related markers, echocardiographic analysis, and immunohistochemistry were used to evaluate myocardial fibrosis injury and the effects of SPD. The proliferation and migration of CFs undergoing different treatments were studied. Immunoblotting and real-time quantitative reverse transcription polymerase chain reaction were used to demonstrate molecular mechanisms. Results: In vivo immunoblotting analysis indicated a downregulation of ornithine decarboxylase and an upregulation of SPD/spermine N1-acetyltransferase. We observed cardiac dysfunction in diabetic mice after 12 weeks. However, the administration of exogenous SPD improved cardiac function, decreased collagen deposition, and reduced myocardial tissue damage. mRNA expression levels of NLRP3, Caspase-1, GSDMD-N, interleukin (IL)-1ß, IL-17A, and IL-18 were increased and suppressed in the myocardium of db/db mice upon treatment with SPD. SPD inhibited the proliferation, migration, and collagen secretion of high-glucose-treated fibroblasts in vitro. SPD inhibits the activation of the TGF-ß1/Smad signaling pathway and decreases collagen deposition by reducing pyroptosis and Smad-7 ubiquitination levels. Conclusion: Based on our findings, SPD may have potential applications in protecting against the deterioration of cardiac function in patients with DCM due to a significant new mechanism for diabetic myocardial fibrosis that we discovered.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mice , Animals , Spermidine , Pyroptosis , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/metabolism , Collagen/metabolism , Inflammation/drug therapy , Fibrosis
19.
Mol Neurobiol ; 60(8): 4488-4501, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37115403

ABSTRACT

Sevoflurane, commonly administered to children as anesthesia, often leads to emergence delirium (ED). Currently, a consensus is lacking among clinicians regarding pharmacological interventions to improve recovery. To determine an effective approach, we compared the effects of several drugs in lowering the incidence of ED after sevoflurane anesthesia in children.We searched online databases for relevant randomized controlled trials (59 studies selected; 5199 NMA-eligible participants) and performed a frequentist network meta-analysis (NMA). This study was registered on PROSPERO (number CRD: 42022329939).All included studies had a low to moderate risk of overall bias. The incidence of ED after sevoflurane anesthesia in children differed according to other drugs administered, and were ranked from high to low according to the surface under the cumulative ranking curve (SUCRA).Sufentanil (91.2%) and dexmedetomidine (77.6%) were more likely to reduce the incidence (SUCRA value) of ED, whereas the placebo (6.5%), ramelteon (11.1%), and magnesium (18%) were less likely to reduce the incidence of ED. Remifentanil (89.3%) ranked first in shortening emergence time, followed by placebo (82.4%) and ketamine (69.7%). Placebo shortened extubation time, followed by remifentanil (66.5%) and alfentanil (61.4%).Sufentanil and remifentanil lowered sevoflurane-induced ED incidences among children and shortened the emergence time more effectively than other drugs. Most adjuvant drugs that are combined with sevoflurane either do not change or may even prolong extubation time. Further research and clinical trials are required to support and update these conclusions.


Subject(s)
Anesthesia , Anesthetics, Inhalation , Emergence Delirium , Methyl Ethers , Humans , Child , Sevoflurane/pharmacology , Sevoflurane/therapeutic use , Sufentanil , Remifentanil , Network Meta-Analysis , Randomized Controlled Trials as Topic , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/therapeutic use , Methyl Ethers/therapeutic use , Anesthesia, General
20.
Pain Ther ; 12(1): 117-139, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36227420

ABSTRACT

INTRODUCTION: Determining the prevalence of chronic postsurgical pain (CPSP) after video-assisted thoracoscopic surgery (VATS) and identifying CPSP predictors should improve the prognosis of patients undergoing VATS. Although several studies have investigated predictors of CPSP after VATS, there were significant dissimilarities in the findings due to the confounding of predictors. METHODS: PubMed, Cochrane, MEDLINE, Web of Science, Chinese Biomedical Literature, and China National Knowledge Infrastructure databases were comprehensively searched using the Medical Subject Headings terms "pain, postoperative," "thoracic surgery, video-assisted," and all related free terms from inception until March 27, 2022. The Stata metaprop package was used to comprehensively analyze the incidence of CPSP following VATS. Furthermore, the pooled odds ratios (OR) or the standardized mean differences (SMD) and their corresponding 95% confidence intervals (95% CI) were calculated, and qualitative analyses were performed for predictors that could not be assessed quantitatively to evaluate the effects of the included risk factors on the occurrence of CPSP. Unadjusted odds ratios were utilized to consider the impact of non-significant estimates if the original study did not report them. RESULTS: Of the 4302 studies, 183 were considered eligible, and 17 were finally included in this study. The overall incidence of CPSP after VATS was 35.3% (95% CI 27.1-43.5%). The qualitative synthesis results revealed that female sex, age, and acute postoperative pain were definite predictors of CPSP after VATS. The number of ports, operation time, duration of drainage, and insufficient analgesia were also considered predictors. Consistent, quantitative synthesis results also showed that the aforementioned predictors were closely related to the occurrence of CPSP after VATS. Only by quantitative analysis, postoperative chemotherapy and an educational level less than junior school were also risk factors for CPSP. Other predictors displayed no evidence or unclear evidence of association with CPSP after VATS. CONCLUSION: This study preliminarily determined the incidence of CPSP after VATS based on the existing literature. Female sex, age, and acute pain were identified as risk factors for CPSP after VATS, and other potential risk factors were also identified and analyzed. However, as a result of the inclusion of retrospective studies and inevitable limitations in this systematic review and meta-analysis, the results of this study still need to be verified by large-scale prospective clinical studies. TRIAL REGISTRATION: CRD42022323179.

SELECTION OF CITATIONS
SEARCH DETAIL