Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Anal Chem ; 96(21): 8300-8307, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38747393

ABSTRACT

An antibody transistor is a promising biosensing platform for the diagnosis and monitoring of various diseases. Nevertheless, the low concentration and short half-life of biomarkers require biodetection at the trace-molecule level, which remains a challenge for existing antibody transistors. Herein, we demonstrate a graphene field-effect transistor (gFET) with electrically oriented antibody probes (EOA-gFET) for monitoring several copies of methylated DNA. The electric field confines the orientation of antibody probes on graphene and diminishes the distance between graphene and methylated DNAs captured by antibodies, generating more induced charges on graphene and amplifying the electric signal. EOA-gFET realizes a limit of detection (LoD) of ∼0.12 copy µL-1, reaching the lowest LoD reported before. EOA-gFET shows a distinguishable signal for liver cancer clinical serum samples within ∼6 min, which proves its potential as a powerful tool for disease screening and diagnosis.


Subject(s)
Antibodies , Biosensing Techniques , DNA Methylation , Graphite , Transistors, Electronic , Humans , Graphite/chemistry , Antibodies/immunology , Antibodies/chemistry , DNA/chemistry , Limit of Detection , Liver Neoplasms/diagnosis , Liver Neoplasms/blood
2.
J Phys Chem Lett ; : 5862-5867, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804506

ABSTRACT

An artificial tactile receptor is crucial for e-skin in next-generation robots, mimicking the mechanical sensing, signal encoding, and preprocessing functionalities of human skin. In the neural network, pressure signals are encoded in spike patterns and efficiently transmitted, exhibiting low power consumption and robust tolerance for bit error rates. Here, we introduce a highly sensitive artificial tactile receptor system integrating a pressure sensor, axon-hillock circuit, and neurotransmitter release device to achieve pressure signal coding with patterned spikes and controlled neurotransmitter release. Owing to the heightened sensitivity of the axon-hillock circuit to pressure-mediated current signals, the artificial tactile receptor achieves a detection limit of 10 Pa that surpasses the human tactile receptors, with a wide response range from 10 to 5 × 105 Pa. Benefiting from the appreciable pressure-responsive performance, the potential application of an artificial tactile receptor in robotic tactile perception has been demonstrated, encompassing tasks such as finger touch and human pulse detection.

3.
Nano Lett ; 24(13): 3914-3921, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38513214

ABSTRACT

Establishing a multivalent interface between the biointerface of a living system and electronic device is vital to building intelligent bioelectronic systems. How to achieve multivalent binding with spatial tolerance at the nanoscale remains challenging. Here, we report an antibody nanotweezer that is a self-adaptive bivalent nanobody enabling strong and resilient binding between transistor and envelope proteins at biointerfaces. The antibody nanotweezer is constructed by a DNA framework, where the nanoscale patterning of nanobodies along with their local spatial adaptivity enables simultaneous recognition of target epitopes without binding stress. As such, effective binding affinity increases by 1 order of magnitude compared with monovalent antibody. The antibody nanotweezer operating on transistor offers enhanced signal transduction, which is implemented to detect clinical pathogens, showing ∼100% overall agreement with PCR results. This work provides a perspective of engineering multivalent interfaces between biosystems with solid-state devices, holding great potential for organoid intelligence on a chip.


Subject(s)
Single-Domain Antibodies , Epitopes , Signal Transduction
4.
Adv Mater ; 36(15): e2312540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38288781

ABSTRACT

On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.


Subject(s)
Point-of-Care Systems , Point-of-Care Testing , Humans , Microfluidics , Biomarkers
5.
Adv Sci (Weinh) ; 11(6): e2307840, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070186

ABSTRACT

Early diagnosis of acute diseases is restricted by the sensitivity and complex process of sample treatment. Here, an ultrasensitive, rapid, and portable electrochemiluminescence-microfluidic (ECL-M) system is described via sandwich-type immunoassay and surface plasmonic resonance (SPR) assay. Using a sandwich immunoreaction approach, the ECL-M system employs cardiac troponin-I antigen (cTnI) as a detection model with a Ru@SiO2 NPs labeled antibody as the signal probe. For miR-499-5p detection, gold nanoparticles generate SPR effects to enhance Ru(bpy)3 2+ ECL signals. The system based on alternating current (AC) electroosmotic flow achieves an LOD of 2 fg mL-1 for cTnI in 5 min and 10 aM for miRNAs in 10 min at room temperature. The point-of-care testing (POCT) device demonstrated 100% sensitivity and 98% specificity for cTnI detection in 123 clinical serum samples. For miR-499-5p, it exhibited 100% sensitivity and 97% specificity in 55 clinical serum samples. Continuous monitoring of these biomarkers in rats' saliva, urine, and interstitial fluid samples for 48 hours revealed observations rarely documented in biotic fluids. The ECL-M POCT device stands as a top-performing system for ECL analysis, offering immense potential for ultrasensitive, rapid, highly accurate, and facile detection and monitoring of acute diseases in POC settings.


Subject(s)
Metal Nanoparticles , MicroRNAs , Rats , Animals , Electroosmosis , Gold , Silicon Dioxide , Acute Disease , Microfluidics , Electrochemical Techniques , Luminescent Measurements
6.
Adv Mater ; 36(5): e2307366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37805919

ABSTRACT

"Test-and-go" single-nucleotide variation (SNV) detection within several minutes remains challenging, especially in low-abundance samples, since existing methods face a trade-off between sensitivity and testing speed. Sensitive detection usually relies on complex and time-consuming nucleic acid amplification or sequencing. Here, a graphene field-effect transistor (GFET) platform mediated by Argonaute protein that enables rapid, sensitive, and specific SNV detection is developed. The Argonaute protein provides a nanoscale binding channel to preorganize the DNA probe, accelerating target binding and rapidly recognizing SNVs with single-nucleotide resolution in unamplified tumor-associated microRNA, circulating tumor DNA, virus RNA, and reverse transcribed cDNA when a mismatch occurs in the seed region. An integrated microchip simultaneously detects multiple SNVs in agreement with sequencing results within 5 min, achieving the fastest SNV detection in a "test-and-go" manner without the requirement of nucleic acid extraction, reverse transcription, and amplification.


Subject(s)
Biosensing Techniques , MicroRNAs , Nucleotides , Argonaute Proteins , DNA/genetics , MicroRNAs/genetics , DNA Probes
7.
Nat Protoc ; 19(2): 340-373, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38001366

ABSTRACT

Crystalline polymer materials, e.g., hyper-crosslinked polystyrene, conjugate microporous polymers and covalent organic frameworks, are used as catalyst carriers, organic electronic devices and molecular sieves. Their properties and applications are highly dependent on their crystallinity. An efficient polymerization strategy for the rapid preparation of highly or single-crystalline materials is beneficial not only to structure-property studies but also to practical applications. However, polymerization usually leads to the formation of amorphous or poorly crystalline products with small grain sizes. It has been a challenging task to efficiently and precisely assemble organic molecules into a single crystal through polymerization. To address this issue, we developed a supercritically solvothermal method that uses supercritical carbon dioxide (sc-CO2) as the reaction medium for polymerization. Sc-CO2 accelerates crystal growth due to its high diffusivity and low viscosity compared with traditional organic solvents. Six covalent organic frameworks with different topologies, linkages and crystal structures are synthesized by this method. The as-synthesized products feature polarized photoluminescence and second-harmonic generation, indicating their high-quality single-crystal nature. This method holds advantages such as rapid growth rate, high productivity, easy accessibility, industrial compatibility and environmental friendliness. In this protocol, we provide a step-by-step procedure including preparation of monomer dispersion, polymerization in sc-CO2, purification and characterization of the single crystals. By following this protocol, it takes 1-5 min to grow sub-mm-sized single crystals by polymerization. The procedure takes ~4 h from preparation of monomer dispersion and polymerization in sc-CO2 to purification and drying of the product.


Subject(s)
Metal-Organic Frameworks , Carbon Dioxide , Polymerization , Polymers , Crystallization
8.
Chemistry ; 30(3): e202302474, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37843045

ABSTRACT

Covalent organic frameworks (COFs) are a type of crystalline porous polymer composed of light elements through strong covalent bonds. COFs have attracted considerable attention due to their unique designable structures and excellent material properties. Currently, COFs have shown outstanding potential in various fields, including gas storage, pollutant removal, catalysis, adsorption, optoelectronics, and their research in the sensing field is also increasingly flourishing. In this review, we focus on COF-based sensors. Firstly, we elucidate the fundamental principles of COF-based sensors. Then, we present the primary application areas of COF-based sensors and their recent advancements, encompassing gas, ions, organic compounds, and biomolecules sensing. Finally, we discuss the future trends and challenges faced by COF-based sensors, outlining their promising prospects in the field of sensing.

9.
Sensors (Basel) ; 23(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960464

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a disease caused by the infectious agent of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). The primary method of diagnosing SARS-CoV-2 is nucleic acid detection, but this method requires specialized equipment and is time consuming. Therefore, a sensitive, simple, rapid, and low-cost diagnostic test is needed. Graphene field-effect transistor (GFET) biosensors have become the most promising diagnostic technology for detecting SARS-CoV-2 due to their advantages of high sensitivity, fast-detection speed, label-free operation, and low detection limit. This review mainly focus on three types of GFET biosensors to detect SARS-CoV-2. GFET biosensors can quickly identify SARS-CoV-2 within ultra-low detection limits. Finally, we will outline the pros and cons of the diagnostic approaches as well as future directions.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Humans , COVID-19/diagnosis , SARS-CoV-2 , Technology
10.
Sci Adv ; 9(38): eadj0839, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37729411

ABSTRACT

Precision chemistry demands miniaturized catalytic systems for sophisticated reactions with well-defined pathways. An ideal solution is to construct a nanoreactor system functioning as a chemistry laboratory to execute a full chemical process with molecular precision. However, existing nanoscale catalytic systems fail to in situ control reaction kinetics in a closed-loop manner, lacking the precision toward ultimate reaction efficiency. We find an inter-electrochemical gating effect when operating DNA framework-constructed enzyme cascade nanoreactors on a transistor, enabling in situ closed-loop reaction monitoring and modulation electrically. Therefore, a comprehensive system is developed, encapsulating nanoreactors, analyzers, and modulators, where the gate potential modulates enzyme activity and switches cascade reaction "ON" or "OFF." Such electric field-effect property enhances catalytic efficiency of enzyme by 343.4-fold and enables sensitive sarcosine assay for prostate cancer diagnoses, with a limit of detection five orders of magnitude lower than methodologies in clinical laboratory. By coupling with solid-state electronics, this work provides a perspective to construct intelligent nano-systems for precision chemistry.


Subject(s)
Biological Assay , Electricity , Male , Humans , Catalysis , Intelligence , Nanotechnology
11.
Anal Chem ; 95(35): 13281-13288, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37610301

ABSTRACT

MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10-19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.


Subject(s)
Graphite , MicroRNAs , Reproducibility of Results , Adsorption , Catalysis
12.
Nano Lett ; 23(11): 4974-4982, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37273232

ABSTRACT

In biological neural networks, chemical communication follows the reversible integrate-and-fire (I&F) dynamics model, enabling efficient, anti-interference signal transport. However, existing artificial neurons fail to follow the I&F model in chemical communication, causing irreversible potential accumulation and neural system dysfunction. Herein, we develop a supercapacitively gated artificial neuron that mimics the reversible I&F dynamics model. Upon upstream neurotransmitters, an electrochemical reaction occurs on a graphene nanowall (GNW) gate electrode of artificial neurons. Charging and discharging the supercapacitive GNWs mimic membrane potential accumulation and recovery, realizing highly efficient chemical communication upon use of acetylcholine down to 2 × 10-10 M. By combining artificial chemical synapses with axon-hillock circuits, the output of neural spikes is realized. With the same neurotransmitter and I&F dynamics, the artificial neuron establishes chemical communication with other artificial neurons and living cells, holding promise as a basic unit to construct a neural network with compatibility to organisms for artificial intelligence and deep human-machine fusion.


Subject(s)
Artificial Intelligence , Bionics , Humans , Models, Neurological , Neurons/physiology , Synapses/physiology , Neurotransmitter Agents
13.
Chin Chem Lett ; : 108688, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37362324

ABSTRACT

The outbreak of COVID-19 has drawn great attention around the world. SARS-CoV-2 is a highly infectious virus with occult transmission by many mutations and a long incubation period. In particular, the emergence of asymptomatic infections has made the epidemic even more severe. Therefore, early diagnosis and timely management of suspected cases are essential measures to control the spread of the virus. Developing simple, portable, and accurate diagnostic techniques for SARS-CoV-2 is the key to epidemic prevention. The advantages of point-of-care testing technology make it play an increasingly important role in viral detection and screening. This review summarizes the point-of-care testing platforms developed by nucleic acid detection, immunological detection, and nanomaterial-based biosensors detection. Furthermore, this paper provides a prospect for designing future highly accurate, cheap, and convenient SARS-CoV-2 diagnostic technology.

14.
J Phys Chem Lett ; 14(17): 4084-4095, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37125726

ABSTRACT

Recent advances in nanotechnologies have promoted the iterative updating of nucleic acid sensors. Among various sensing technologies, the electrical nanobiosensor is regarded as one of the most promising prospects to achieve rapid, precise, and point-of-care nucleic acid based diagnostics. In this Perspective, we introduce recent progresses in electrical nanobiosensors for nucleic acid detection. First, the strategies for improving detection performance are summarized, including chemical amplification and electrical amplification. Then, the detection mechanism of electrical nanobiosensors, such as electrochemical biosensors, field-effect transistors, and photoelectric enhanced biosensors, is illustrated. At the same time, their applications in cancer screening, pathogen detection, gene sequencing, and genetic disease diagnosis are introduced. Finally, challenges and future prospects in clinical application are discussed.


Subject(s)
Biosensing Techniques , Nucleic Acids , Nanotechnology
15.
Nat Protoc ; 18(7): 2313-2348, 2023 07.
Article in English | MEDLINE | ID: mdl-37208410

ABSTRACT

Biological research and diagnostic applications normally require analysis of trace analytes in biofluids. Although considerable advancements have been made in developing precise molecular assays, the trade-off between sensitivity and ability to resist non-specific adsorption remains a challenge. Here, we describe the implementation of a testing platform based on a molecular-electromechanical system (MolEMS) immobilized on graphene field-effect transistors. A MolEMS is a self-assembled DNA nanostructure, containing a stiff tetrahedral base and a flexible single-stranded DNA cantilever. Electromechanical actuation of the cantilever modulates sensing events close to the transistor channel, improving signal-transduction efficiency, while the stiff base prevents non-specific adsorption of background molecules present in biofluids. A MolEMS realizes unamplified detection of proteins, ions, small molecules and nucleic acids within minutes and has a limit of detection of several copies in 100 µl of testing solution, offering an assay methodology with wide-ranging applications. In this protocol, we provide step-by-step procedures for MolEMS design and assemblage, sensor manufacture and operation of a MolEMS in several applications. We also describe adaptations to construct a portable detection platform. It takes ~18 h to construct the device and ~4 min to finish the testing from sample addition to result.


Subject(s)
Biosensing Techniques , Graphite , Nucleic Acids , Biosensing Techniques/methods , DNA/analysis , DNA, Single-Stranded , Proteins , Graphite/chemistry
16.
J Am Chem Soc ; 145(18): 10035-10044, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37097713

ABSTRACT

Compared with traditional assay techniques, field-effect transistors (FETs) have advantages such as fast response, high sensitivity, being label-free, and point-of-care detection, while lacking generality to detect a wide range of small molecules since most of them are electrically neutral with a weak doping effect. Here, we demonstrate a photo-enhanced chemo-transistor platform based on a synergistic photo-chemical gating effect in order to overcome the aforementioned limitation. Under light irradiation, accumulated photoelectrons generated from covalent organic frameworks offer a photo-gating modulation, amplifying the response to small molecule adsorption including methylglyoxal, p-nitroaniline, nitrobenzene, aniline, and glyoxal when measuring the photocurrent. We perform testing in buffer, artificial urine, sweat, saliva, and diabetic mouse serum. The limit of detection is down to 10-19 M methylglyoxal, about 5 orders of magnitude lower than existing assay technologies. This work develops a photo-enhanced FET platform to detect small molecules or other neutral species with enhanced sensitivity for applications in fields such as biochemical research, health monitoring, and disease diagnosis.


Subject(s)
Biosensing Techniques , Body Fluids , Animals , Mice , Biosensing Techniques/methods , Pyruvaldehyde , Saliva , Transistors, Electronic
17.
ACS Appl Mater Interfaces ; 15(12): 15884-15892, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36929869

ABSTRACT

Flexible positive pressure sensors have been studied extensively and have been used in a lot of scenarios. However, negative pressure detection is also in demand in some scenarios, such as fluid mechanics analysis, air pressure sensing, and so on. Flexible wearable sensors that can detect both positive and negative pressures will greatly broaden the application field. In this paper, we report a flexible highly sensitive ionic gel (IG) pressure sensor, which is simple and of low cost to prepare and can reliably detect a large pressure range from -98 to 100 kPa under an atmospheric pressure of about 982 hPa. The IG dielectric layer is composed of polyvinyl alcohol and phosphoric acid with a random microstructure of sandpaper inversion. The sensor exhibits flexibility, cycling stability, and high sensitivity under both negative and positive pressures (S = 84.45 nF/kPa for the negative pressure section, S = 25.61 nF/kPa for the positive pressure section). These sensors could be worn on the body not only to test breathing and pulse but also to measure air pressure for estimating the altitude, showing that the flexible full-pressure sensors have a wider application range in wearable electronics.

18.
Anal Chem ; 95(2): 1446-1453, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36577081

ABSTRACT

An aptamer-based field-effect transistor (Apta-FET) is a well-developed assay method with high selectivity and sensitivity. Due to the limited information density that natural nucleotide library holds, the Apta-FET faces fundamental restriction in universality to detect various types of analytes. Herein, we demonstrate a type of Apta-FET sensors based on an artificial nucleotide aptamer (AN-Apta-FET). The introduction of an artificial nucleotide increases the diversity of the potential aptamer structure and expands the analyte category of the Apta-FET. The AN-Apta-FET specifically detects hepatoma exosomes, which traditional Apta-FET fails to discriminate from other tumor-derived exosomes, with a limit of detection down to 242 particles mL-1. The AN-Apta-FET distinguishes serum samples of hepatocellular carcinoma patients within 9 min from those of healthy people, showing the potential as a comprehensive assay tool in future disease diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Liver Neoplasms/diagnosis
19.
Sensors (Basel) ; 22(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36146305

ABSTRACT

Field-effect transistor (FET) sensors require not only high sensitivity but also excellent regeneration ability before widespread applications are possible. Although some regenerative FETs have been reported, their lowest limit of detection (LoD) barely achieves 10-15 mol L-1. Here, we develop a graphene FET with a regenerative sensing interface based on dynamic covalent chemistry (DCvC). The LoD down to 5.0 × 10-20 mol L-1 remains even after 10 regenerative cycles, around 4-5 orders of magnitude lower than existing transistor sensors. Owing to its ultra-sensitivity, regeneration ability, and advantages such as simplicity, low cost, label-free and real-time response, the FET sensor based on DCvC is valuable in applications such as medical diagnosis, environment monitoring, etc.


Subject(s)
Biosensing Techniques , Graphite , Limit of Detection , Transistors, Electronic
20.
J Phys Chem Lett ; 13(33): 7673-7680, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35960015

ABSTRACT

Reliable patterning of organic semiconductors (OSCs) with high uniformity is essential to all-photolithography organic electronics. However, the majority of cross-linked OSCs experience performance fluctuations after photolithography because of the inherent vulnerability of low-ordered regions. Herein, we develop an anti-solution penetration photolithography process to achieve the reliable patterning of the OSC layer for all-photolithography integrated organic electronics. Using a thick and highly cross-linked semiconductor film and a low-solubility developer, an erosion-free semiconductor channel is obtained with a high mobility of up to 1.254 cm2 V-1 s-1 and a uniform threshold voltage close to zero. Compared with existing all-photolithography organic circuits, the unit logic gate area consumption is lower by 1-3 orders of magnitude at 0.0069 mm2, while the transistor density is higher by 1-2 orders of magnitude at 6780 Tr cm-2. The miniaturized organic inverters maintain uncompromised voltage gains, and the 15-stage organic ring oscillators feature higher oscillation frequencies, making them promising for applications in wide-ranging integrated organic circuits.

SELECTION OF CITATIONS
SEARCH DETAIL
...