Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 821
Filter
1.
Int J Rheum Dis ; 27(8): e15285, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39114972

ABSTRACT

OBJECTIVE: To investigate the age-standardized prevalence rate (ASPR) and temporal trends for hip, knee, hand, and other osteoarthritis (OA) at a global, continental, and national level. DESIGN: The estimates and 95% uncertainty intervals (UIs) for case number and ASPR of OA were derived from the Global Burden of Diseases Study (GBD) 2019. The joinpoint regression analysis was utilized to examine the temporal trends from 1990 to 2019. RESULTS: In 2019, the global ASPR of hip, knee, hand, and other OA was 400.95 (95% UI: 312.77-499.41), 4375.95 (95% UI: 3793.04-5004.9), 1726.38 (95% UI: 1319.91-2254.85), and 745.62 (95% UI: 570.16-939.8). As for the ASPR of hip OA, hand OA, and other OA, Europe and America had higher rates than Asia and Africa, and Asia was second only to America in knee OA ASPRs. The period 1990-2019, the ASPR at global level dropped significantly for hand OA (AAPC = -0.4%, 95% CI: -0.47 to -0.34) and increased significantly for hip OA (AAPC = 0.43%, 95% CI: 0.39-0.46), knee OA (AAPC = 0.17%, 95% CI: 0.09-0.24) and other OA (AAPC = 0.16%, 95% CI: 0.15-0.17). Different continents, countries, and periods demonstrated significant changes. CONCLUSIONS: Globally, America has the highest OA burden and Asia has a higher knee OA burden. Appropriate prevention and control measures to reduce modifiable risk factors are needed to reduce the burden of OA.


Subject(s)
Global Burden of Disease , Osteoarthritis , Humans , Prevalence , Global Burden of Disease/trends , Female , Male , Middle Aged , Aged , Osteoarthritis/epidemiology , Osteoarthritis/diagnosis , Time Factors , Adult , Global Health , Osteoarthritis, Hip/epidemiology , Osteoarthritis, Hip/diagnosis , Osteoarthritis, Knee/epidemiology , Osteoarthritis, Knee/diagnosis , Age Distribution , Sex Distribution
2.
J Org Chem ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39094225

ABSTRACT

Oxetane has been extensively studied for its applications in medicinal chemistry and as a reactive intermediate in synthesis. Experiments report a Cu-catalyzed [2 + 2] photocycloaddition of acetone and norbornene to oxetane, which is proposed to deviate from the conventional Paternò-Büchi reaction. However, its mechanism at the atomic level is not clear. In this study, we used a combination of multistate complete active space second-order perturbation theory (MS-CASPT2) and density functional theory to systematically investigate the reaction mechanism and elucidate the factors contributing to the diastereomeric selectivity. Initially, the formation of the TpCu(Norb) complex is achieved by strong interaction between tris(pyrazolyl)borate Cu(I) (TpCu) and norbornene in the ground state (S0). Upon photoexcitation, TpCu(Norb) eventually decays to the T1 state, in which TpCu(Norb) attacks acetone to initiate subsequent reactions and produces final endo- or exo-oxetane products. All these reactions initially involve the C-C bond formation in the T1 state thereto leading to a ring-opening intermediate. This intermediate then undergoes a nonradiative transition to the S0 state, producing a five-membered ring intermediate, from which the C-O bond is formed, leading to the experimentally dominant exo-product. In contrast, the endo-oxetane formation requires a rearrangement process after the C-C bond is formed because of the large steric effects. As a consequence, the different reaction pathways generating exo- and endo-products exhibit large differences in the free-energy barriers, which results in a diastereomeric selectivity observed experimentally. Additionally, the nonradiative transition is found to play an important role in facilitating these reaction steps. The present computational study provides valuable mechanistic insights into Cu-catalyzed photocycloaddition reactions.

3.
Eur J Neurol ; : e16422, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096086

ABSTRACT

BACKGROUND AND PURPOSE: Parent artery atherosclerosis is an important aetiology of recent subcortical ischaemic stroke (RSIS). However, comparisons of RSIS with different degrees of parent artery atherosclerosis are lacking. METHODS: Prospectively collected data from our multicentre cohort (all were tertiary centres) of the Stroke Imaging Package Study between 2015 and 2017 were retrospectively reviewed. The patients with RSIS defined as a single clinically relevant diffusion-weighted imaging positive lesion in the territory of lenticulostriate arteries were categorized into three subgroups: (1) normal middle cerebral artery (MCA) on magnetic resonance angiography and high-resolution magnetic resonance imaging (HR-MRI); (2) low-grade MCA atherosclerosis (normal or <50% stenosis on magnetic resonance angiography and with MCA plaques on HR-MRI); (3) steno-occlusive MCA atherosclerosis (stenosis ≥50% or occlusion). The primary outcome was 90-day functional dependence (modified Rankin Scale score >2). The clinical and imaging findings were compared between subgroups. RESULTS: A total of 239 patients (median age 60.0 [52.0-67.0] years, 72% male) were enrolled, including 140 with normal MCA, 64 with low-grade MCA atherosclerosis and 35 with steno-occlusive MCA atherosclerosis. Patients with steno-occlusive MCA atherosclerosis had the largest infarct volume. Low-grade MCA atherosclerosis was independently associated with cerebral microbleeding, more severe perivascular spaces in basal ganglia and higher total cerebral small vessel disease burden. Low-grade MCA atherosclerosis was an independent determinant of 90-day functional dependence (odds ratio 3.897; 95% confidence interval 1.309-11.604). CONCLUSIONS: Our study suggested RSIS with varying severity of parent artery atherosclerosis exhibits distinctive clinical and neuroimaging characteristics, with low-grade MCA atherosclerosis associating with higher cerebral small vessel disease burden and worse prognosis.

4.
Inorg Chem ; 63(28): 13031-13038, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38957956

ABSTRACT

The separation of high-octane dibranched alkanes from naphtha is critical in the refining of gasoline. To date, research on the membrane-based separation of alkane isomers has been limited, with a particular paucity of investigations into mixed-matrix membranes. Herein, the continuous and dense UiO-66/PIM-1 mixed-matrix membrane, which was prepared through precise control of the interfacial structure, was first applied to the differentiation of C6 alkane isomers. Due to the synergistic combination of UiO-66 with differential adsorption capabilities for alkanes and PIM-1 that possesses a cross-linkable structure, the resulting UiO-66/PIM-1-(20) membrane demonstrated remarkable separation performance and high stability. Pervaporation measurements showed that the mass fraction of 2,2-dimethylbutane in the feed side was increased from 50.0 to 75.8 wt % while an excellent flux of 1700 g m-2 h-1 was maintained over a continuous 40 h period. The UiO-66/PIM-1-(20) membrane, characterized by its facile replication and processing, shows potential for large-scale fabrication. This study offers a new approach to the membrane separation of alkane isomers.

5.
Angew Chem Int Ed Engl ; : e202407135, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018249

ABSTRACT

Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron ß-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθµ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.

6.
Article in English | MEDLINE | ID: mdl-39058535

ABSTRACT

A polyphasic taxonomic approach was used to characterize the three bacterial strains (FP830T, FP2034, and FP2262) isolated from the rhizosphere soil of rice, corn, and highland barley in Beijing, Heilongjiang, and Tibet, respectively, in PR China. These strains were Gram-negative, rod-shaped, and have one or two polar flagella. They exhibited optimal growth at 28 °C and pH 7.0 in the presence of 1 % (w/v) NaCl and showed fluorescence under ultraviolet light when cultivated on King's B plates. The FP830T genome size is 6.4 Mbp with a G+C content of 61.0 mol%. FP830T has the potential to promote plant growth by producing various metabolites such as fengycin, pyoverdin, indole-3-acetic acid, and the volatile substance 2,3-butanediol. Phylogenetic analysis indicated that three isolates formed an independent branch, which most closely related to type strains Pseudomonas thivervalensis DSM 13194T and Pseudomonas zanjanensis SWRI12T. The values of average nucleotide identity and digital DNA-DNA hybridization between three isolates and closest relatives were not higher than 93.7 and 52.3 %, respectively. The dominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and aminophospholipid. The predominant respiratory quinone was ubiquinone (Q-9). Based on polyphasic taxonomic analysis, it was concluded that strains FP830T, FP2034, and FP2262 represented a novel species within the genus Pseudomonas, and Pseudomonas beijingensis sp. nov. was proposed for the name of novel species. The type strain is FP830T (=ACCC 62448T=JCM 35689T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Oryza , Phylogeny , Pseudomonas , RNA, Ribosomal, 16S , Rhizosphere , Sequence Analysis, DNA , Soil Microbiology , Pseudomonas/genetics , Pseudomonas/classification , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Fatty Acids/analysis , Oryza/microbiology , Hordeum/microbiology , Zea mays/microbiology , Tibet
7.
Cerebrovasc Dis ; : 1-9, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38964301

ABSTRACT

INTRODUCTION: There has been an increasing demand for imaging methods that provide a comprehensive evaluation of intracranial clot and collateral circulation, which are helpful for clinical decision-making and predicting functional outcomes. We aimed to quantitatively evaluate acute intracranial clot burden and collaterals on high-resolution magnetic resonance imaging (HR-MRI). METHODS: We analyzed acute ischemic stroke patients with internal carotid artery or middle cerebral artery occlusion in a prospective multicenter study. The clot burden was scored on a scale of 0-10 based on the clot location on HR-MRI. The collateral score was assigned on a scale of 0-3 using the minimum intensity projection from HR-MRI. Uni- and multivariable logistic regression analyses were performed to assess their correlation with clinical outcome (modified Rankin Scale >2 at 90 days). Thresholds were defined to dichotomize into low- and high-score groups, and predictive performances were assessed for clinical and radiologic outcomes. RESULTS: Ninety-nine patients (mean age of 60.77 ± 11.54 years) were included in the analysis. The interobserver correlation was 0.89 (95% CI: 0.77-0.95) for the clot burden score and 0.78 (95% CI: 0.53-0.90) for the collateral score. Multivariable logistic regression analysis demonstrated that the collateral score (odds ratio: 0.41, 95% CI: 0.19-0.90) was significantly associated with clinical outcomes. A better functional outcome was observed in the group with clot burden scores greater than 7 (p = 0.011). A smaller final infarct size and a higher diffusion-weighted imaging-based Alberta Stroke Program Early Computed Tomography Score were observed in the group with collateral scores greater than 1 (all p < 0.05). CONCLUSIONS: HR-MRI offers a new tool for quantitative assessment of clot burden and collaterals simultaneously in future clinical practices and research endeavors.

8.
J Phys Chem A ; 128(28): 5516-5524, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38954640

ABSTRACT

Machine learning is capable of effectively predicting the potential energies of molecules in the presence of high-quality data sets. Its application in the construction of ground- and excited-state potential energy surfaces is attractive to accelerate nonadiabatic molecular dynamics simulations of photochemical reactions. Because of the huge computational cost of excited-state electronic structure calculations, the construction of a high-quality data set becomes a bottleneck. In the present work, we first built two data sets. One was obtained from surface hopping dynamics simulations at the semiempirical OM2/MRCI level. Another was extracted from the dynamics trajectories at the CASSCF level, which was reported previously. The ground- and excited-state potential energy surfaces of ethylene-bridged azobenzene at the CASSCF computational level were constructed based on the former low-level data set. Although non-neural network machine learning methods can achieve good or modest performance during the training process, only neural network models provide reliable predictions on the latter external test data set. The BPNN and SchNet combined with the Δ-ML scheme and the force term in the loss functions are recommended for dynamics simulations. Then, we performed excited-state dynamics simulations of the photoisomerization of ethylene-bridged azobenzene on machine learning potential energy surfaces. Compared with the lifetimes of the first excited state (S1) estimated at different computational levels, our results on the E isomer are in good agreement with the high-level estimation. However, the overestimation of the Z isomer is unimproved. It suggests that smaller errors during the training process do not necessarily translate to more accurate predictions on high-level potential energies or better performance on nonadiabatic dynamics simulations, at least in the present case.

9.
Adv Mater ; : e2405673, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022876

ABSTRACT

Immunogenic cell death (ICD) often results in the production and accumulation of adenosine (ADO), a byproduct that negatively impacts the therapeutic effect as well as facilitates tumor development and metastasis. Here, an innovative strategy is elaborately developed to effectively activate ICD while avoiding the generation of immunosuppressive adenosine. Specifically, ZIF-90, an ATP-responsive consumer, is synthesized as the core carrier to encapsulate AB680 (CD73 inhibitor) and then coated with an iron-polyphenol layer to prepare the ICD inducer (AZTF), which is further grafted onto prebiotic bacteria via the esterification reaction to obtain the engineered biohybrid (Bc@AZTF). Particularly, the designed Bc@AZTF can actively enrich in tumor sites and respond to the acidic tumor microenvironment to offload AZTF nanoparticles, which can consume intracellular ATP (iATP) content and simultaneously inhibit the ATP-adenosine axis to reduce the accumulation of adenosine, thereby alleviating adenosine-mediated immunosuppression and strikingly amplifying ICD effect. Importantly, the synergy of anti-PD-1 (αPD-1) with Bc@AZTF not only establishes a collaborative antitumor immune network to potentiate effective tumoricidal immunity but also activates long-lasting immune memory effects to manage tumor recurrence and rechallenge, presenting a new paradigm for ICD treatment combined with adenosine metabolism.

10.
J Am Chem Soc ; 146(28): 19547-19554, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38976802

ABSTRACT

We simulated hot-electron relaxation in black phosphorus using the nonadiabatic molecular dynamics (NA-MD) approach with a non-Condon effect in momentum space beyond the harmonic approximation. By comparing simulations at the Γ point in a large supercell with those using a few k-points in a smaller supercell─while maintaining the same number of electronic states within the same energy range, we demonstrate that both setups yield remarkably consistent energy relaxation times, regardless of the initial state energy. This consistency arises from the complementary effects of supercell size in real space and the number of k-points in the reciprocal space. This finding confirms that simulations at a single k-point in large size supercells are an effective approximation for NA-MD with a non-Condon effect. This approach offers significant advantages for complex photophysics, such as intervalley scattering and indirect bandgap charge recombination, and is particularly suitable for large systems without the need for a harmonic approximation.

11.
Inorg Chem ; 63(29): 13450-13458, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38959430

ABSTRACT

The conversion of CO2 to generate high-value-added chemicals has become one of the hot research topics in green synthesis. Thereinto, the cyclization reaction of propargylic amines with CO2 is highly attractive because the resultant oxazolidinones are widely found in pharmaceutical chemistry. Cu(I)-based metal-organic frameworks (MOFs) as catalysts exhibit promising application prospects for CO2 conversion. However, their practical application was greatly limited due to Cu(I) being liable to disproportionation or oxidization. Herein, the solid copper(I) iodide thorium-based porous framework {[Cu5I6Th6(µ3-O)4(µ3-OH)4(H2O)10(L)10]·OH·4DMF·H2O}n (1) (HL = 2-methylpyridine-4-carboxylic acid) constructed by [Th6] clusters and [CuxIy] subunits was successfully prepared and structurally characterized. To our knowledge, this is the first copper(I) iodide-based actinide organic framework. Catalytic investigations indicate that 1 can effectively catalyze the cyclization of propargylic amines with CO2 under ambient conditions, which can be reused at least five times without a remarkable decline of catalytic activity. Importantly, 1 exhibits excellent chemical stability and the oxidation state of Cu(I) in it can remain stable under various conditions. This work can provide a valuable strategy for the synthesis of stable Cu(I)-MOF materials.

12.
Br J Psychol ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041068

ABSTRACT

Collaboration has an essential role in memory, and how to appropriately use it to affect individual memory positively is a matter of concern. The meta-analysis generally assessed the effect of collaboration on subsequent individual retrieval, registered on the PROSPERO platform and adhering to the PRISMA guidelines, using the Web of Science, Science Direct, CNKI and WanFang databases with post-collaborative memory as the main subject, screened studies published up to December 31, 2023, a total of 64 studies with 101 effect sizes, including 13,398 participants from 11 countries. Heterogeneity test, sensitivity analysis, subgroup analysis and meta-regression analysis were performed on the included studies, while publication bias was assessed. The results found that collaboration improves subsequent individual retrieval memory more than individuals, and collaboration has a moderate facilitating effect on subsequent individual retrieval. Group size, material category, category size, collaboration phase, collaboration approach, task process and test method were among the moderating variables. The study emphasizes the role of collaboration in cognition and demonstrates the post-collaborative benefits. The conclusions are of value for developing methods to improve individual memory.

13.
J Phys Chem Lett ; 15(28): 7244-7253, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38976358

ABSTRACT

Conical intersections (CIs) are pivotal in many photochemical processes. Traditional quantum chemistry methods, such as the state-average multiconfigurational methods, face computational hurdles in solving the electronic Schrödinger equation within the active space on classical computers. While quantum computing offers a potential solution, its feasibility in studying CIs, particularly on real quantum hardware, remains largely unexplored. Here, we present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent field method based on the variational quantum eigensolver (VQE-SA-CASSCF) on a superconducting quantum processor. This approach is applied to investigate CIs in two prototypical systems─ethylene (C2H4) and triatomic hydrogen (H3). We illustrate that VQE-SA-CASSCF, coupled with ongoing hardware and algorithmic enhancements, can lead to a correct description of CIs on existing quantum devices. These results lay the groundwork for exploring the potential of quantum computing to study CIs in more complex systems in the future.

14.
Front Immunol ; 15: 1431224, 2024.
Article in English | MEDLINE | ID: mdl-39040116

ABSTRACT

Introduction: High-alkalinity water is a serious health hazard for fish and can cause oxidative stress and metabolic dysregulation in fish livers. However, the molecular mechanism of liver damage caused by high alkalinity in fish is unclear. Methods: In this study, 180 carp were randomly divided into a control (C) group and a high-alkalinity (A25) group and were cultured for 56 days. High-alkalinity-induced liver injury was analysed using histopathological, whole-transcriptome, and metabolomic analyses. Results: Many autophagic bodies and abundant mitochondrial membrane damage were observed in the A25 group. High alkalinity decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity and the total antioxidant capacity (T-AOC) and increased the malondialdehyde (MDA) content in liver tissues, causing oxidative stress in the liver. Transcriptome analysis revealed 61 differentially expressed microRNAs (miRNAs) and 4008 differentially expressed mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that mammalian target of rapamycin (mTOR), forkhead box O (FoxO), mitogen-activated protein kinase (MAPK), and the autophagy signalling pathway were the molecular mechanisms involved. High alkalinity causes oxidative stress and autophagy and results in autophagic damage in the liver. Bioinformatic predictions indicated that Unc-51 Like Kinase 2 (ULK2) was a potential target gene for miR-140-5p, demonstrating that high alkalinity triggered autophagy through the miR-140-5p-ULK2 axis. Metabolomic analysis revealed that the concentrations of cortisol 21-sulfate and beta-aminopropionitrile were significantly increased, while those of creatine and uracil were significantly decreased. Discussion: The effects of high alkalinity on oxidative stress and autophagy injury in the liver were analysed using whole-transcriptome miRNA-mRNA networks and metabolomics approaches. Our study provides new insights into liver injury caused by highly alkaline water.


Subject(s)
Autophagy , Liver , Metabolome , Oxidative Stress , Transcriptome , Animals , Liver/metabolism , Liver/pathology , Gene Expression Profiling , Alkalies/toxicity , Alkalies/adverse effects , MicroRNAs/genetics , Metabolomics , Fish Diseases/metabolism
15.
J Am Chem Soc ; 146(30): 21052-21060, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39013148

ABSTRACT

Chlorine oxides play crucial roles in ozone depletion, and the final oxidation steps of chlorine oxide potentially result in the formation of chloric acid (HClO3) or perchloric acid (HClO4). Herein, the solvation and reactive uptake of three stable isomers of chlorine trioxide (Cl2O3), namely, ClOCl(O)O, ClClO3, and ClOOOCl, at the air-water interface were investigated using classical and hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) coupled with advanced free energy methods. Two distinct mechanisms were revealed for the hydrolysis of ClOCl(O)O and ClClO3: molecular and ionic mechanisms. A comparison of the computed free-energy profiles for the gaseous and air-water interfacial systems indicated that the air-water interface could markedly lower the free-energy barrier for ClO3- or HClO3 formation while stabilizing the product state. In particular, the hydrolysis of ClClO3 at the air-water interface was barrierless. In contrast, our calculations showed that the hydrolysis of ClOOOCl was very slow, indicating that ClOOOCl was inert to water at the air-water interface. This study provides theoretical evidence for the hypothesis that HClO3 is a sink for chlorine oxides and for the widespread distributions of HClO3 recently observed in the Arctic region.

16.
J Am Chem Soc ; 146(31): 21742-21751, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39074151

ABSTRACT

The activation of halogens (X = Cl, Br, I) by N2O5 is linked to NOx sources, ozone concentrations, NO3 reactivity, and the chemistry of halide-containing aerosol particles. However, a detailed chemical mechanism is still lacking. Herein, we explored the chemistry of the N2O5···X- systems at the air-water interface. Two different reaction pathways were identified for the reaction of N2O5 with X- at the air-water interface: the formation of XNO2 or XONO, along with NO3-. In the case of the Cl- system, the ClNO2 generation pathway is more favorable, while for the Br- and I- systems, the formation of BrONO and IONO is barrierless, making them the predominant products. Furthermore, the mechanisms of formation of X2 from XNO2 and XONO were also investigated. The high energy barriers of reactions and the high free energies of the products compared to those of the reactants indicate that ClNO2 is stable at the air-water interface. Contrary to the widely held belief regarding X2 producing from the reaction of XNO2 with X-, our calculations demonstrate that BrONO and IONO initially form stable BrONO···Br- and IONO···I- complexes, which then subsequently react with Br- and I- to form Br3- and I3-, respectively. Finally, Br3- and I3- decompose to form Br2 and I2. These findings have significant implications for experimental interpretation and offer new insights into halogen cycling in the atmosphere.

17.
Int J Stroke ; : 17474930241270447, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075747

ABSTRACT

RATIONALE: Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors enable an additional 54% to 75% reduction in low-density lipoprotein cholesterol (LDL-C) in statin-treated patients, demonstrating plaque regression in coronary artery disease. However, the impact of achieving an extremely low level of LDL-C with PCSK9 inhibitors (e.g., evolocumabEvolocumab) on symptomatic intracranial atherosclerosis remains unexplored. AIM AND HYPOTHESIS: To determine if combining evolocumabEvolocumab and statins achieves a more significant symptomatic intracranial plaque reduction than statin therapy solely. SAMPLE SIZE ESTIMATES: With a sample size of 1000 subjects, a two-sided of 0.05, and 20% lost to follow-up, the study will have 83.3% power to detect the difference in intracranial plaque burden. METHODS AND DESIGN: This is an investigator-initiated multicenter, randomized, open-label, outcome assessor-blinded trial, evaluating the impact of evolocumabEvolocumab on intracranial plaque burden assessed by high-resolution magnetic resonance imaging at baseline in patients undergoing a clinically indicated acute stroke or transient ischemic attack due to intracranial artery stenosis, and after 24 weeks of treatment. Subjects (n = 1000) will be randomized 1:1 into two groups to receive either evolocumabEvolocumab 140 mg every two weeks with statin therapy or solely statin therapy. STUDY OUTCOMES: The primary endpoint is the change in plaque burden assessed by high-resolution magnetic resonance imaging, performed at baseline and the end of the 24-week treatment period. DISCUSSION: This trial will explore whether more significant plaque regression is achievable with treatment after combining statins and PCSK9 inhibitors, providing information about important efficacy, mechanism, and safety data.Trial registration number: ChiCTR2300068868; https://www.chictr.org.cn/.

18.
Chem Sci ; 15(25): 9557-9565, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38939138

ABSTRACT

Sorption-based atmospheric water-harvesting (AWH) could help to solve global freshwater scarcity. The search for adsorbents with high water-uptake capacity at low relative humidity, rapid adsorption-desorption kinetics and high thermal conductivity is a critical challenge in AWH. Herein, we report a MAF-4 (aka ZIF-8)-derived nanoporous carbon (NPCMAF-4-800) with multiple N-doped sites, considerable micropore characteristics and inherent photothermal properties, for efficient water production in a relatively arid climate. NPCMAF-4-800 exhibited optimal water-sorption performance of 306 mg g-1 at 40% relative humidity (RH). An excellent sunlight-absorption rate was realized (97%) attributed to its high degree of graphitization. A proof-of-concept device was designed and investigated for the practical harvesting of water from the atmosphere using natural sunlight. NPCMAF-4-800 achieved an unprecedentedly high water production rate of 380 mg g-1 h-1 at 40% RH, and could produce 1.77 L kg-1 freshwater during daylight hours in an outdoor low-humidity climate of ∼25 °C and 40% RH. These findings may shed light on the potential of MOF-derived porous carbons in the AWH field, and inspire the future development of solar-driven water-generation systems.

19.
ACS Appl Mater Interfaces ; 16(25): 32847-32856, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38862405

ABSTRACT

Controlling the crystal facets of semiconductor nanocrystals (NCs) has been proven as an effective approach to tune their physicochemical properties. However, the study on facet-engineering of metastable zinc blende CdS (zb-CdS) and its heterostructures is still not fully explored. In this study, the zb-CdS and Au@zb-CdS core-shell NCs with tunable terminating facets are controllably synthesized, and their photocatalytic performance for water splitting are evaluated. It is found that the {111} facets of the zb-CdS NCs display higher intrinsic activity than the {100} counterparts, which originates from these surfaces being much more efficient, facilitating electron transition to enhance the adsorption ability and the dissociation of the adsorbed water, as revealed by theoretical calculations. Moreover, the Au@zb-CdS core-shell NCs exhibit better photocatalytic performance than the zb-CdS NCs terminated with the same facets under visible light irradiation (≥400 nm), which is mainly ascribed to the accelerated electron separation at the interface, as demonstrated by femtosecond transient absorption (fs-TA) spectroscopy. Importantly, the quantum yield of plasmon-induced hot electron transfer quantified by fs-TA in the Au@zb-CdS core-shell octahedrons can be reached as high as 1.2% under 615 nm excitation, which is higher than that of the Au@zb-CdS core-shell cubes. This work unravels the face-dependent photocatalytic performance of the metastable semiconductor NCs via a combination of experiments and theoretical calculations, providing the understanding of the underlying mechanism of these photocatalysts.

20.
Sci Rep ; 14(1): 12598, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824219

ABSTRACT

To tackle the difficulty of extracting features from one-dimensional spectral signals using traditional spectral analysis, a metabolomics analysis method is proposed to locate two-dimensional correlated spectral feature bands and combine it with deep learning classification for wine origin traceability. Metabolomics analysis was performed on 180 wine samples from 6 different wine regions using UPLC-Q-TOF-MS. Indole, Sulfacetamide, and caffeine were selected as the main differential components. By analyzing the molecular structure of these components and referring to the main functional groups on the infrared spectrum, characteristic band regions with wavelengths in the range of 1000-1400 nm and 1500-1800 nm were selected. Draw two-dimensional correlation spectra (2D-COS) separately, generate synchronous correlation spectra and asynchronous correlation spectra, establish convolutional neural network (CNN) classification models, and achieve the purpose of wine origin traceability. The experimental results demonstrate that combining two segments of two-dimensional characteristic spectra determined by metabolomics screening with convolutional neural networks yields optimal classification results. This validates the effectiveness of using metabolomics screening to determine spectral feature regions in tracing wine origin. This approach effectively removes irrelevant variables while retaining crucial chemical information, enhancing spectral resolution. This integrated approach strengthens the classification model's understanding of samples, significantly increasing accuracy.


Subject(s)
Deep Learning , Metabolomics , Wine , Wine/analysis , Metabolomics/methods , Neural Networks, Computer , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL