Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697043

ABSTRACT

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Subject(s)
Lanthanoid Series Elements , Magnetic Resonance Imaging , Nanoparticles , Polymers , Semiconductors , Magnetic Resonance Imaging/methods , Animals , Lanthanoid Series Elements/chemistry , Polymers/chemistry , Nanoparticles/chemistry , Mice , Humans , Gadolinium/chemistry , Luminescence , Singlet Oxygen/chemistry , Yttrium/chemistry , Fluorides/chemistry , Mice, Nude
2.
Adv Mater ; 35(21): e2205410, 2023 May.
Article in English | MEDLINE | ID: mdl-36517207

ABSTRACT

Halide perovskites have gained tremendous attention in the past decade owing to their excellent properties in optoelectronics. Recently, a fascinating property, ferroelectricity, has been discovered in halide perovskites and quickly attracted widespread interest. Compared with traditional perovskite oxide ferroelectrics, halide perovskites display natural advantages such as structural softness, low weight, and easy processing, which are highly desirable in applications pursuing miniaturization and flexibility. This review focuses on the current research progress in halide perovskite ferroelectrics, encompassing the emerging materials systems and their potential applications in ferroelectric photovoltaics, self-powered photodetection, and X-ray detection. The main challenges and possible solutions in the future development of halide perovskite ferroelectric materials are also attempted to be pointed out.

3.
Antioxidants (Basel) ; 11(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36552680

ABSTRACT

The coloring efficiency and physiological function of astaxanthin in fish vary with its regions. The aim of this study was to compare the retention rates of dietary astaxanthin from different sources and its effects on growth, pigmentation, and physiological function in Oncorhynchus mykiss. Fish were fed astaxanthin-supplemented diets (LP: 0.1% Lucantin® Pink CWD; CP: 0.1% Carophyll® Pink; EP: 0.1% Essention® Pink; PR: 1% Phaffia rhodozyma; HP: 1% Haematococcus pluvialis), or a diet without astaxanthin supplementation, for 56 days. Dietary astaxanthin enhanced pigmentation as well as the growth of the fish. The intestinal morphology of fish was improved, and the crude protein content of dorsal muscle significantly increased in fish fed with astaxanthin. Moreover, astaxanthin led to a decrease in total cholesterol levels and alanine aminotransferase and aspartate aminotransferase activity in plasma. Fish fed on the CP diet also produced the highest level of umami amino acids (aspartic acid and glutamic acid). Regarding antioxidant capacity, astaxanthin increased Nrf2/HO-1 signaling and antioxidant enzyme activity. Innate immune responses, including lysozyme and complement systems, were also stimulated by astaxanthin. Lucantin® Pink CWD had the highest stability in feed and achieved the best pigmentation, Essention® Pink performed best in growth promotion and Carophyll® Pink resulted in the best flesh quality. H. pluvialis was the astaxanthin source for achieving the best antioxidant properties and immunity of O. mykiss.

4.
Nanoscale ; 14(12): 4595-4603, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35255115

ABSTRACT

Lanthanide-doped nanocrystals that simultaneously convert near-infrared (NIR) irradiation into emission of shorter (ultraviolet-C, UVC) and longer wavelengths (NIR) offer many exciting opportunities for application in drug release, photodynamic therapy, deep-tissue bioimaging, and solid-state lasing. However, a formidable challenge is the development of lanthanide-doped nanocrystals with efficient UVC and NIR emissions simultaneously due to their low conversion efficiency. Here, we report a dye-sensitized heterogeneous core-multishell architecture with enhanced UVC emission and NIR emission under 793 nm excitation. This nanocrystal design efficiently suppresses energy trapping induced by interior lattice defects and promotes upconverted UVC emission from Gd3+. Moreover, a significant downshifting emission from Yb3+ at 980 nm was also observed owing to an efficient energy transfer from Nd3+ to Yb3+. Furthermore, by taking advantage of ICG sensitization, we realized a largely enhanced emission from the UVC to NIR spectral region. This study provides a mechanistic understanding of the upconversion and downshifting processes within a heterogeneous architecture while offering exciting opportunities for important biological and energy applications.


Subject(s)
Lanthanoid Series Elements , Nanoparticles , Photochemotherapy , Energy Transfer , Lanthanoid Series Elements/chemistry , Nanoparticles/chemistry
5.
Adv Mater ; 34(3): e2106194, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34726310

ABSTRACT

Nanoparticles have been explored in glioblastomas as they can traverse the blood-brain barrier and target glioblastoma selectively. However, direct observation of nanoparticle trafficking into glioblastoma cells and their underlying intracellular fate after systemic administration remains uncharacterized. Here, based on high-resolution transmission electron microscopy experiments of an intracranial glioblastoma model, it is shown that ligand-modified nanoparticles can traverse the blood-brain barrier, endocytose into the lysosomes of glioblastoma cells, and undergo endolysosomal escape upon photochemical ionization. Moreover, an optimal dose of metronomic chemotherapy using dual-drug-loaded nanocarriers can induce an augmented antitumor effect directly on tumors, which has not been recognized in previous studies. Metronomic chemotherapy enhances antitumor effects 3.5-fold compared with the standard chemotherapy regimen using the same accumulative dose in vivo. This study provides a conceptual framework that can be used to develop metronomic nanoparticle regimens as a safe and viable therapeutic strategy for treating glioblastomas and other advanced-stage solid tumors.


Subject(s)
Glioblastoma , Nanoparticles , Blood-Brain Barrier , Endocytosis , Glioblastoma/drug therapy , Humans , Nanoparticles/chemistry
6.
Aquac Nutr ; 2022: 7820017, 2022.
Article in English | MEDLINE | ID: mdl-36860473

ABSTRACT

The purpose of this study is to investigate the effects of dietary carbohydrate levels on growth performance, body composition, antioxidant capacity, immunity, and liver morphology in Oncorhynchus mykiss under cage culture with flowing freshwater. Fish (initial body weight 25.70 ± 0.24 g) were fed five isonitrogenous (420 g/kg protein) and isolipidic (150 g/kg lipid) diets containing 50.6, 102.1, 151.3, 200.9 and 251.8 g/kg carbohydrate levels, respectively. The results indicated that fish fed diets containing 50.6-200.9 g/kg carbohydrate showed significantly higher growth performance, feed utilization, and feed intake than those fed 251.8 g/kg dietary carbohydrate levels. Based on the analysis of the quadratic regression equation for weight gain rate, the appropriate dietary carbohydrate requirement of O. mykiss was estimated to be 126.2 g/kg. 251.8 g/kg carbohydrate level activated Nrf2-ARE signaling pathway, suppressed superoxide dismutase activity and total antioxidant capacity, and increased MDA content in the liver. Besides, fish fed a diet containing 251.8 g/kg carbohydrate showed a certain degree of hepatic sinus congestion and dilatation in the liver. Dietary 251.8 g/kg carbohydrate upregulated the mRNA transcription level of proinflammatory cytokines and downregulated the mRNA transcription level of lysozyme and complement 3. Whole-body compositions were not affected by dietary carbohydrate levels. In conclusion, 251.8 g/kg carbohydrate level suppressed the growth performance, antioxidant capacity and innate immunity, resulting in liver injury and inflammatory response of O. mykiss. A diet containing more than 200.9 g/kg carbohydrate is not efficiently utilized by O. mykiss under cage culture with flowing freshwater.

7.
Nat Commun ; 12(1): 4367, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272390

ABSTRACT

Photon upconversion of near-infrared (NIR) irradiation into ultraviolet-C (UVC) emission offers many exciting opportunities for drug release in deep tissues, photodynamic therapy, solid-state lasing, energy storage, and photocatalysis. However, NIR-to-UVC upconversion remains a daunting challenge due to low quantum efficiency. Here, we report an unusual six-photon upconversion process in Gd3+/Tm3+-codoped nanoparticles following a heterogeneous core-multishell architecture. This design efficiently suppresses energy consumption induced by interior energy traps, maximizes cascade sensitizations of the NIR excitation, and promotes upconverted UVC emission from high-lying excited states. We realized the intense six-photon-upconverted UV emissions at 253 nm under 808 nm excitation. This work provides insight into mechanistic understanding of the upconversion process within the heterogeneous architecture, while offering exciting opportunities for developing nanoscale UVC emitters that can be remotely controlled through deep tissues upon NIR illumination.


Subject(s)
Gadolinium/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Photons , Thulium/chemistry , Ultraviolet Rays , Benzofurans/chemistry , Infrared Rays , Lasers , Singlet Oxygen/chemistry
8.
Nanoscale ; 11(21): 10220-10228, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31089652

ABSTRACT

Nd3+-doped nanoparticles involving 808 nm excitation hold great promise in various biomedical applications, such as bioimaging, biodetection, theranostics and optogenetics. Here we present the synthesis and characterization of core-multishell Nd3+-doped nanoparticles displaying excellent optical properties. We systematically studied the influence of doping concentration, nanostructure design, excitation wavelength and size effect on the upconversion luminescence of Nd3+-doped nanoparticles. Remarkably, the emission intensity of optimized nanoparticles with 808 nm excitation is three times higher than the emission intensity of those with 980 nm excitation. Surprisingly, the optical profiles of Nd3+-doped nanoparticles strongly depend on the excitation wavelengths. The dominant effect responsible for the emission intensity difference and the energy transfer mechanism upon different excitation wavelengths are investigated. Interestingly, the heavily Nd3+-doped nanoparticles not only display efficient upconversion luminescence, but also are able to convert the excitation source to heat under a single 808 nm excitation source. Importantly, these efforts will lead to Nd3+-doped nanoparticles with unprecedented optical and thermal properties that will have broad utility in fundamental research and technological applications.

9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-707075

ABSTRACT

Tripterygium wilfordii Hook has the properties of rheumatism dispelling,promoting blood circulation, dredging collaterals, detumescence, pain relieving, anti-parasitism and detoxification. Its common medication forms include Tripterygium wilfordii Hook tablets, Tripterygium wilfordii Hook polygonal tablets, Kunming Shanhaitang tablets,Kunxian Capsules,Tripterygium wilfordii Hook bicolor and Tripterygium wilfordii Hook total terpene tablets. Reproductive toxicity in Tripterygium wilfordii Hook preparations is a side-effect that may deeply impact reproductive-age patients. The combination of single herb or compound can significantly reduce the reproductive toxicity of Tripterygium wilfordii Hook preparations.This article reviewed the recent research in this field and provide references for clinical medication.

SELECTION OF CITATIONS
SEARCH DETAIL
...