Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 134(2): 165-185, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38166463

ABSTRACT

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Mice , Animals , Efferocytosis , TNF Receptor-Associated Factor 6/metabolism , Atherosclerosis/metabolism , Inflammation/genetics , Mice, Knockout , Phenotype , Apolipoproteins E , Interferon Regulatory Factors/genetics , Mice, Inbred C57BL
2.
Cell Mol Immunol ; 21(3): 292-308, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38287103

ABSTRACT

CD8+ T-cell exhaustion is a state of dysfunction that promotes tumor progression and is marked by the generation of Slamf6+ progenitor exhausted (Texprog) and Tim-3+ terminally exhausted (Texterm) subpopulations. Inhibitor of DNA binding protein 2 (Id2) has been shown to play important roles in T-cell development and CD8+ T-cell immunity. However, the role of Id2 in CD8+ T-cell exhaustion is unclear. Here, we found that Id2 transcriptionally and epigenetically regulates the generation of Texprog cells and their conversion to Texterm cells. Genetic deletion of Id2 dampens CD8+ T-cell-mediated immune responses and the maintenance of stem-like CD8+ T-cell subpopulations, suppresses PD-1 blockade and increases tumor susceptibility. Mechanistically, through its HLH domain, Id2 binds and disrupts the assembly of the Tcf3-Tal1 transcriptional regulatory complex, and thus modulates chromatin accessibility at the Slamf6 promoter by preventing the interaction of Tcf3 with the histone lysine demethylase LSD1. Therefore, Id2 increases the abundance of the permissive H3K4me2 mark on the Tcf3-occupied E-boxes in the Slamf6 promoter, modulates chromatin accessibility at the Slamf6 promoter and epigenetically regulates the generation of Slamf6+ Texprog cells. An LSD1 inhibitor GSK2879552 can rescue the Id2 knockout phenotype in tumor-bearing mice. Inhibition of LSD1 increases the abundance of Slamf6+Tim-3- Texprog cells in tumors and the expression level of Tcf1 in Id2-deleted CD8+ T cells. This study demonstrates that Id2-mediated transcriptional and epigenetic modification drives hierarchical CD8+ T-cell exhaustion, and the mechanistic insights gained may have implications for therapeutic intervention with tumor immune evasion.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Hepatitis A Virus Cellular Receptor 2/metabolism , T-Cell Exhaustion , Neoplasms/pathology , Histone Demethylases/metabolism , Chromatin/metabolism
3.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762128

ABSTRACT

Up to 50% of hepatocellular carcinoma (HCC) is caused by hepatitis B virus (HBV) infection, and the surface protein of HBV is essential for the progression of HBV-related HCC. The expression of large HBV surface antigen (LHB) is presented in HBV-associated HCC tissues and is significantly associated with the development of HCC. Gene set enrichment analysis revealed that LHB overexpression regulates the cell cycle process. Excess LHB in HCC cells induced chronic endoplasmic reticulum (ER) stress and was significantly correlated with tumor growth in vivo. Cell cycle analysis showed that cell cycle progression from G1 to S phase was greatly enhanced in vitro. We identified intensive crosstalk between ER stress and cell cycle progression in HCC. As an important regulator of the G1/S checkpoint, p27 was transcriptionally upregulated by transcription factors ATF4 and XBP1s, downstream of the unfolded protein response pathway. Moreover, LHB-induced ER stress promoted internal ribosome-entry-site-mediated selective translation of p27, and E3 ubiquitin ligase HRD1-mediated p27 ubiquitination and degradation. Ultimately, the decrease in p27 protein levels reduced G1/S arrest and promoted the progress of HCC by regulating the cell cycle.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Cyclin-Dependent Kinase Inhibitor p27 , Hepatitis B/complications , Hepatitis B virus , Immunologic Factors , Liver Neoplasms/genetics , Membrane Proteins , Unfolded Protein Response
4.
Cancer Commun (Lond) ; 43(9): 981-1002, 2023 09.
Article in English | MEDLINE | ID: mdl-37405956

ABSTRACT

BACKGROUND: The mechanism of hepatitis B virus (HBV)-induced carcinogenesis remains an area of interest. The accumulation of hepatitis B surface antigen in the endoplasmic reticulum (ER) of hepatocytes stimulates persistent ER stress. Activity of the unfolded protein response (UPR) pathway of ER stress may play an important role in inflammatory cancer transformation. How the protective UPR pathway is hijacked by cells as a tool for malignant transformation in HBV-related hepatocellular carcinoma (HCC) is still unclear. Here, we aimed to define the key molecule hyaluronan-mediated motility receptor (HMMR) in this process and explore its role under ER stress in HCC development. METHODS: An HBV-transgenic mouse model was used to characterize the pathological changes during the tumor progression. Proteomics and transcriptomics analyses were performed to identify the potential key molecule, screen the E3 ligase, and define the activation pathway. Quantitative real-time PCR and Western blotting were conducted to detect the expression of genes in tissues and cell lines. Luciferase reporter assay, chromatin immunoprecipitation, coimmunoprecipitation, immunoprecipitation, and immunofluorescence were employed to investigate the molecular mechanisms of HMMR under ER stress. Immunohistochemistry was used to clarify the expression patterns of HMMR and related molecules in human tissues. RESULTS: We found sustained activation of ER stress in the HBV-transgenic mouse model of hepatitis-fibrosis-HCC. HMMR was transcribed by c/EBP homologous protein (CHOP) and degraded by tripartite motif containing 29 (TRIM29) after ubiquitination under ER stress, which caused the inconsistent expression of mRNA and protein. Dynamic expression of TRIM29 in the HCC progression regulated the dynamic expression of HMMR. HMMR could alleviate ER stress by increasing autophagic lysosome activity. The negative correlation between HMMR and ER stress, positive correlation between HMMR and autophagy, and negative correlation between ER stress and autophagy were verified in human tissues. CONCLUSIONS: This study identified the complicated role of HMMR in autophagy and ER stress, that HMMR controls the intensity of ER stress by regulating autophagy in HCC progression, which could be a novel explanation for HBV-related carcinogenesis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Endoplasmic Reticulum Stress/genetics , Hepatitis B virus/genetics , Mice, Transgenic , Carcinogenesis , DNA-Binding Proteins , Transcription Factors
5.
Water Res ; 202: 117440, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34304072

ABSTRACT

The influence of biochar (BC) on anerobic digestion (AD) of organic wastes have been widely studied. However, the effect of BC on rate-limiting step during AD of lignocellulosic waste, i.e. the hydrolysis and acidogenesis step, is rarely studied and the underlying mechanisms have not been investigated. In this study, the benefits of BC with respect to dark fermentative hydrogen production were explored in a fermentation system by a heat-shocked consortium from sewage sludge (SS) with pretreated sugarcane bagasse (PSCB) as carbon source. The results showed that biochar boosted biohydrogen production by 317.1% through stimulating bacterial growth, improving critical enzymatic activities, manipulating the ratio of NADH/NAD+ and enhancing electron transfer efficiency of fermentation system. Furthermore, cellulolytic Lachnospiraceae was efficiently enriched and electroactive bacteria were selectively colonized and the ecological niche was formed on the surface of biochar. Synergistic effect between functional bacteria and extracellular electron transfer (EET) in electroactive bacteria were assumed to be established and maintained by biochar amendment. This study shed light on the underlying mechanisms of improved performance of biohydrogen production from lignocellulosic waste during mesophilic dark fermentation by BC supplementation.


Subject(s)
Saccharum , Bacteria , Cellulose , Charcoal , Electrons , Fermentation , Hydrogen
6.
CNS Neurosci Ther ; 2021 May 13.
Article in English | MEDLINE | ID: mdl-33987940

ABSTRACT

AIMS: The blood-brain barrier (BBB) is a specialized and indispensable structure in brain blood vessels that is damaged during Alzheimer's disease (AD). CD147 is expressed on the BBB and deeply engaged in the AD pathological process. In this study, we aimed to provide a better understanding of the roles of CD147 in BBB function in health and neurodegenerative disease. METHODS AND RESULTS: We measured CD147 expression in mouse brains and demonstrated that CD147 is exclusively expressed in brain endothelial cells (BECs), and its expression decreases with age. After constructing endothelial-specific CD147 knockout mice, we performed RNA-sequencing on BECs isolated from mice of different ages as well as a range of database analyses. We found that endothelial CD147 is essential for the dual functions of the BBB, including barrier maintenance and transporter regulation. This study also shows that CD147 plays a pivotal role in neurodegenerative diseases, particularly in AD. CONCLUSIONS: Our findings suggested that targeting CD147 in BECs may represent a novel therapeutic strategy, which promoted the design of future experimental investigations and the mechanistic understanding of neurodegenerative diseases.

7.
Toxicol Pathol ; 49(4): 815-842, 2021 06.
Article in English | MEDLINE | ID: mdl-33618634

ABSTRACT

Digital pathology platforms with integrated artificial intelligence have the potential to increase the efficiency of the nonclinical pathologist's workflow through screening and prioritizing slides with lesions and highlighting areas with specific lesions for review. Herein, we describe the comparison of various single- and multi-magnification convolutional neural network (CNN) architectures to accelerate the detection of lesions in tissues. Different models were evaluated for defining performance characteristics and efficiency in accurately identifying lesions in 5 key rat organs (liver, kidney, heart, lung, and brain). Cohorts for liver and kidney were collected from TG-GATEs open-source repository, and heart, lung, and brain from internally selected R&D studies. Annotations were performed, and models were trained on each of the available lesion classes in the available organs. Various class-consolidation approaches were evaluated from generalized lesion detection to individual lesion detections. The relationship between the amount of annotated lesions and the precision/accuracy of model performance is elucidated. The utility of multi-magnification CNN implementations in specific tissue subtypes is also demonstrated. The use of these CNN-based models offers users the ability to apply generalized lesion detection to whole-slide images, with the potential to generate novel quantitative data that would not be possible with conventional image analysis techniques.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Animals , Image Processing, Computer-Assisted , Rats
8.
Biotechnol Appl Biochem ; 68(4): 871-880, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32798236

ABSTRACT

An efficient ionic liquids (ILs) recycle technology will increase the economic viability of lignocellulosic biorefinery. The availability of recycling 1-butyl-3-methylimidazolium chloride for rice straw (RS) pretreatment was conducted. The kosmotropic salt K3 PO4 (TKP) solution was used as antisolvent for cellulose precipitation and forming a three-phase system consisting of biomass, ILs-rich, and salt-rich phases. The upper ILs phase and the bottom TKP phase were recycled without additional purification, which significantly simplifies the process for recovering ILs. Subsequently, the RS pretreated with multiple reusing ILs (RPRS) were investigated by components analysis, structure evolution, enzymatic hydrolysis, and fermentation experiments. The results showed that unpurified reusing ILs led to further delignification and improvement of enzyme accessibility of the pretreated RS. The reducing sugar yield of RS pretreated with 8th reusing IL (8th RPRS) could still reach 98.9%, and the ethanol and succinic acid concentrations achieved 91.9 and 29.3 g/L by simultaneous saccharification and cofermentation. The present study demonstrated that the ILs recovered by phase-separation process could be used for RS pretreatment, and achieving high titer ethanol fermentation.


Subject(s)
Cellulose/chemistry , Ionic Liquids/chemistry , Lignin/chemistry , Oryza/chemistry , Hydrolysis , Imidazoles/chemistry , Phosphates/chemistry , Potassium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...