Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(16): 4486-4493, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38634523

ABSTRACT

Two-dimensional (2D) MXene materials with innovative properties and versatile applications have gained immense popularity among scientists. The green and environmentally friendly Lewis acid salt etching route has opened up immense possibilities for the advancement of 2D MXene materials. In this study, we precisely etched the Al element from the double A-element MAX phases Ti2(SnyAl1-y)C by employing Lewis molten salt guided by redox potentials. This approach led to the discovery of a novel Ti2SnyCClx dual-phase structure consisting of Ti2SnC and Ti2CClx. We then established that the etching of the MAX phase via Lewis acid salt is facilitated by the oxidation of M-site elements, with the MX sublayer acting as an electron transmission conduit to enable the oxidation of A-site elements. This work is dedicated to unraveling the underlying mechanisms governing the etching processes using Lewis molten salt, thereby contributing to a more profound comprehension of these innovative etching routes.

2.
ACS Nano ; 18(14): 10019-10030, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38545930

ABSTRACT

MAX phases are highly promising materials for electromagnetic (EM) wave absorption because of their specific combination of metal and ceramic properties, making them particularly suitable for harsh environments. However, their higher matching thickness and impedance mismatching can limit their ability to attenuate EM waves. To address this issue, researchers have focused on regulating the electronic structure of MAX phases through structural engineering. In this study, we successfully synthesized a ternary MAX phase known as Sc2GaC MAX with the rare earth element Sc incorporated into the M-site sublayer, resulting in exceptional conductivity and impressive stability at high temperatures. The Sc2GaC demonstrates a strong reflection loss (RL) of -47.7 dB (1.3 mm) and an effective absorption bandwidth (EAB) of 5.28 GHz. It also achieves effective absorption of EM wave energy across a wide frequency range, encompassing the X and Ku bands. This exceptional performance is observed within a thickness range of 1.3 to 2.1 mm, making it significantly superior to other Ga-MAX phases. Furthermore, Sc2GaC exhibited excellent absorption performance even at elevated temperatures. After undergoing oxidation at 800 °C, it achieves a minimum RL of -28.3 dB. Conversely, when treated at 1400 °C under an argon atmosphere, Sc2GaC demonstrates even higher performance, with a minimum RL of -46.1 dB. This study highlights the potential of structural engineering to modify the EM wave absorption performance of the MAX phase by controlling its intrinsic electronic structure.

SELECTION OF CITATIONS
SEARCH DETAIL