Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Xenotransplantation ; 31(4): e12881, 2024.
Article in English | MEDLINE | ID: mdl-39185796

ABSTRACT

BACKGROUND: The number of multigene-modified donor pigs for xenotransplantation is increasing with the advent of gene-editing technologies. However, it remains unclear which gene combination is suitable for specific organ transplantation. METHODS: In this study, we utilized CRISPR/Cas9 gene editing technology, piggyBac transposon system, and somatic cell cloning to construct GTKO/hCD55/hTBM/hCD39 four-gene-edited cloned (GEC) pigs and performed kidney transplantation from pig to rhesus monkey to evaluate the effectiveness of these GEC pigs. RESULTS: First, 107 cell colonies were obtained through drug selection, of which seven were 4-GE colonies. Two colonies were selected for somatic cell nuclear transfer (SCNT), resulting in seven fetuses, of which four were GGTA1 biallelic knockout. Out of these four, two fetuses had higher expression of hCD55, hTBM, and hCD39. Therefore, these two fetuses were selected for two consecutive rounds of cloning, resulting in 97 live piglets. After phenotype identification, the GGTA1 gene of these pigs was inactivated, and hCD55, hTBM, and hCD39 were expressed in cells and multiple tissues. Furthermore, the numbers of monkey IgM and IgG binding to the peripheral blood mononuclear cells (PBMCs) of the 4-GEC pigs were markedly reduced. Moreover, 4-GEC porcine PBMCs had greater survival rates than those from wild-type pigs through complement-mediated cytolysis assays. In pig-to-monkey kidney xenotransplantation, the kidney xenograft successfully survived for 11 days. All physiological and biochemical indicators were normal, and no hyperacute rejection or coagulation abnormalities were found after transplantation. CONCLUSION: These results indicate that the GTKO/hCD55/hTBM/hCD39 four-gene modification effectively alleviates immune rejection, and the pig kidney can functionally support the recipient monkey's life.


Subject(s)
Animals, Genetically Modified , Galactosyltransferases , Gene Editing , Kidney Transplantation , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Kidney Transplantation/methods , Swine , Gene Editing/methods , Galactosyltransferases/genetics , CRISPR-Cas Systems , Macaca mulatta , Nuclear Transfer Techniques , Heterografts , Humans , Graft Survival/immunology , Graft Rejection/immunology , Apyrase , Antigens, CD
3.
Neuroimage ; 298: 120790, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147292

ABSTRACT

Brain microstructural alterations possibly occur in the normal-appearing white matter (NAWM) and grey matter of small vessel disease (SVD) patients, and may contribute to cognitive impairment. The aim of this study was to explore cognitive related microstructural alterations in white matter and deep grey matter nuclei in SVD patients using magnetic resonance (MR) quantitative susceptibility mapping (QSM). 170 SVD patients, including 103 vascular mild cognitive impairment (VaMCI) and 67 no cognitive impairment (NCI), and 21 healthy control (HC) subjects were included, all underwent a whole-brain QSM scanning. Using a white matter and a deep grey matter atlas, subregion-based QSM analysis was conducted to identify and characterize microstructural alterations occurring within white matter and subcortical nuclei. Significantly different susceptibility values were revealed in NAWM and in several specific white matter tracts including anterior limb of internal capsule, corticospinal tract, medial lemniscus, middle frontal blade, superior corona radiata and tapetum among VaMCI, NCI and HC groups. However, no difference was found in white matter hyperintensities between VaMCI and NCI. A trend toward higher susceptibility in the caudate nucleus and globus pallidus of VaMCI patients compared to HC, indicating elevated iron deposition in these areas. Interestingly, some of these QSM parameters were closely correlated with both global and specific cognitive function scores, controlling age, gender and education level. Our study suggested that QSM may serve as a useful imaging tool for monitoring cognitive related microstructural alterations in brain. This is especially meaningful for white matter which previously lacks of attention.

4.
Alzheimers Dement ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39175425

ABSTRACT

INTRODUCTION: The paramagnetic iron, diamagnetic amyloid beta (Aß) plaques and their interaction are crucial in Alzheimer's disease (AD) pathogenesis, complicating non-invasive magnetic resonance imaging for prodromal AD detection. METHODS: We used a state-of-the-art sub-voxel quantitative susceptibility mapping method to simultaneously measure Aß and iron levels in post mortem human brains, validated by histology. Further transcriptomic analysis using Allen Human Brain Atlas elucidated the underlying biological processes. RESULTS: Regional increased paramagnetic and diamagnetic susceptibility were observed in medial prefrontal, medial parietal, and para-hippocampal cortices associated with iron deposition (R = 0.836, p = 0.003) and Aß accumulation (R = 0.853, p = 0.002) in AD brains. Higher levels of gene expression relating to cell cycle, post-translational protein modifications, and cellular response to stress were observed. DISCUSSION: These findings provide quantitative insights into the variable vulnerability of cortical regions to higher levels of Aß aggregation, iron overload, and subsequent neurodegeneration, indicating changes preceding clinical symptoms. HIGHLIGHTS: The vulnerability of distinct brain regions to amyloid beta (Aß) and iron accumulation varies. Histological validation was performed on stained sections of ex-vivo human brains. Regional variations in susceptibility were linked to gene expression profiles. Iron and Aß levels in ex-vivo brains were simultaneously quantified.

5.
Front Aging Neurosci ; 16: 1361436, 2024.
Article in English | MEDLINE | ID: mdl-39050988

ABSTRACT

Purpose: Employing free water (FW) imaging, a cutting-edge diffusion MRI technique, we assessed neuroinflammation within deep gray matter (DGM) in small vessel disease (SVD) over 1-2 years. Method: One hundred and seventy SVD patients and 21 healthy controls (HCs) underwent MRI scans and neuropsychological evaluations at baseline. These patients were then categorized into two groups: 67 displayed no cognitive impairment (NCI), while 103 exhibited vascular mild cognitive impairment (VaMCI). A follow-up study 1-2 years later included 23 from the NCI group and 28 from the VaMCI group. Calculation of FW values within DGM facilitated both cross-sectional and longitudinal analysis, revealing partial correlations between FW value changes and cognitive function alternations. Results: Baseline examinations disclosed significant differences in DGM FW values among the three participant groups. We found increased mean FW values in the left pulvinar (Pul), bilateral lateral nuclei (LN) and bilateral internal medullary lamina of the thalamus in VaMCI participants compared with their NCI counterparts in longitudinal analysis. Notably, negative associations emerged between the FW value changes in the left Pul and the right LN of the thalamus and MoCA score changes in the VaMCI group over 1-2 years. Conclusions: These findings support the hypothesis that increased FW value is present at the preclinical stage of SVD and remains persistent during the early course of the disease, potentially acting as the biomarker for the mechanism of underlying cognitive decline in SVD.

6.
Microorganisms ; 12(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38930494

ABSTRACT

The beta T-cell receptor (TRB) expressed by beta T cells is essential for foreign antigen recognition. The TRB locus contains a TRBV family that encodes three complementarity determining regions (CDRs). CDR1 is associated with antigen recognition and interactions with MHC molecules. In contrast to domestic pigs, African suids lack a 284-bp segment spanning exons 1 and 2 of the TRBV27 gene that contains a sequence encoding CDR1. In this study, we used the African swine fever virus (ASFV) as an example to investigate the effect of deleting the TRBV27-encoded CDR1 on the resistance of domestic pigs to exotic pathogens. We first successfully generated TRBV27-edited fibroblasts with disruption of the CDR1 sequence using CRISPR/Cas9 technology and used them as donor cells to generate gene-edited pigs via somatic cell nuclear transfer. The TRBV-edited and wild-type pigs were selected for synchronous ASFV infection. White blood cells were significantly reduced in the genetically modified pigs before ASFV infection. The genetically modified and wild-type pigs were susceptible to ASFV and exhibited typical fevers (>40 °C). However, the TRBV27-edited pigs had a higher viral load than the wild-type pigs. Consistent with this, the gene-edited pigs showed more clinical signs than the wild-type pigs. In addition, both groups of pigs died within 10 days and showed similar severe lesions in organs and tissues. Future studies using lower virulence ASFV isolates are needed to determine the relationship between the TRBV27 gene and ASFV infection in pigs over a relatively long period.

7.
Cell Biosci ; 14(1): 86, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937838

ABSTRACT

BACKGROUND: Neurodevelopmental disorders (NDD), such as autism spectrum disorders (ASD) and intellectual disorders (ID), are highly debilitating childhood psychiatric conditions. Genetic factors are recognized as playing a major role in NDD, with a multitude of genes and genomic regions implicated. While the functional validation of NDD-associated genes has predominantly been carried out using mouse models, the significant differences in brain structure and gene function between mice and humans have limited the effectiveness of mouse models in exploring the underlying mechanisms of NDD. Therefore, it is important to establish alternative animal models that are more evolutionarily aligned with humans. RESULTS: In this study, we employed CRISPR/Cas9 and somatic cell nuclear transplantation technologies to successfully generate a knockout miniature pig model of the MIR137 gene, which encodes the neuropsychiatric disorder-associated microRNA miR-137. The homozygous knockout of MIR137 (MIR137-/-) effectively suppressed the expression of mature miR-137 and led to the birth of stillborn or short-lived piglets. Transcriptomic analysis revealed significant changes in genes associated with neurodevelopment and synaptic signaling in the brains of MIR137-/- miniature pig, mirroring findings from human ASD transcriptomic data. In comparison to miR-137-deficient mouse and human induced pluripotent stem cell (hiPSC)-derived neuron models, the miniature pig model exhibited more consistent changes in critical neuronal genes relevant to humans following the loss of miR-137. Furthermore, a comparative analysis identified differentially expressed genes associated with ASD and ID risk genes in both miniature pig and hiPSC-derived neurons. Notably, human-specific miR-137 targets, such as CAMK2A, known to be linked to cognitive impairments and NDD, exhibited dysregulation in MIR137-/- miniature pigs. These findings suggest that the loss of miR-137 in miniature pigs affects genes crucial for neurodevelopment, potentially contributing to the development of NDD. CONCLUSIONS: Our study highlights the impact of miR-137 loss on critical genes involved in neurodevelopment and related disorders in MIR137-/- miniature pigs. It establishes the miniature pig model as a valuable tool for investigating neurodevelopmental disorders, providing valuable insights for potential applications in human research.

8.
BMC Genomics ; 25(1): 622, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902599

ABSTRACT

BACKGROUND: Global per capita meat consumption continues to rise, especially pork. Meat quality is influenced by the content of intramuscular fat (IMF) as a key factor. The longissimus dorsi muscle of Dahe pigs (DHM, IMF: 7.98% ± 1.96%) and Dahe black pigs (DHBM, IMF: 3.30% ± 0.64%) was studied to explore cellular heterogeneity and differentially expressed genes (DEGs) associated with IMF deposition using single-nucleus RNA sequencing (snRNA-seq). The lipid composition was then analyzed using non-targeted lipidomics. RESULTS: A total of seven cell subpopulations were identified, including myocytes, fibroblast/fibro/adipogenic progenitors (FAPs), satellite cells, endothelial cells, macrophages, pericytes, and adipocytes. Among them, FAPs and adipocytes were more focused because they could be associated with lipid deposition. 1623 DEGs in the FAPs subpopulation of DHBM were up-regulated compared with DHM, while 1535 were down-regulated. These DEGs enriched in the glycolysis/gluconeogenesis pathway. 109 DEGs were up-regulated and 806 were down-regulated in the adipocyte subpopulation of DHBM compared with DHM, which were mainly enriched in the PPAR signaling pathway and fatty acid (FA) biosynthesis. The expression level of PPARG, ABP4, LEP, and ACSL1 genes in DHM was higher than that in DHBM. Lipidomics reveals porcine lipid composition characteristics of muscle tissue. A total of 41 lipid classes and 2699 lipid species were identified in DHM and DHBM groups. The top ten relative peak areas of lipid classes in DHM and DHBM were triglyceride (TG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), diglyceride (DG), cardiolipin (CL), ceramides (Cer), Simple Glc series (Hex1Cer), sphingomyelin (phSM), and phosphatidylinositol (PI). The relative peak areas of 35 lipid species in DHM were lower than DHBM, and 28 lipid species that were higher. There was a significant increase in the TG fatty acyl chains C6:0, C17:0, and C11:4, and a significant decrease in C16:0, C18:1, C18:2, and C22:4 in DHBM (p < 0.05). CONCLUSIONS: C16:0 FA may downregulate the expression level of PPARG gene, which leads to the downregulation of fat metabolism-related genes such as ACSL, PLIN2, and FABP4 in DHBM compared with DHM. This may be the reason that the lipid deposition ability of Dahe pigs is stronger than that of Dahe black pigs, which need further investigation.


Subject(s)
Lipid Metabolism , Muscle, Skeletal , Animals , Swine , Muscle, Skeletal/metabolism , Lipid Metabolism/genetics , Lipidomics , Sequence Analysis, RNA , Single-Cell Analysis , Lipids/analysis , Gene Expression Profiling
9.
J Appl Oral Sci ; 32: e20230294, 2024.
Article in English | MEDLINE | ID: mdl-38747782

ABSTRACT

OBJECTIVE: This study aims to develop a compound biomaterial to achieve effective soft tissue regeneration. METHODOLOGY: Compound hyaluronic acid (CHA) and liquid horizontal-platelet-rich fibrin (H-PRF) were mixed at a ratio of 1:1 to form a CHA-PRF gel. Human gingival fibroblasts (HGFs) were used in this study. The effect of CHA, H-PRF, and the CHA-PRF gel on cell viability was evaluated by CCK-8 assays. Then, the effect of CHA, H-PRF, and the CHA-PRF gel on collagen formation and deposition was evaluated by qRT‒PCR and immunofluorescence analysis. Finally, qRT‒PCR, immunofluorescence analysis, Transwell assays, and scratch wound-healing assays were performed to determine how CHA, H-PRF, and the CHA-PRF gel affect the migration of HGFs. RESULTS: The combination of CHA and H-PRF shortened the coagulation time of liquid H-PRF. Compared to the pure CHA and H-PRF group, the CHA-PRF group exhibited the highest cell proliferation at all time points, as shown by the CCK-8 assay. Col1a and FAK were expressed at the highest levels in the CHA-PRF group, as shown by qRT‒PCR. CHA and PRF could stimulate collagen formation and HGF migration, as observed by fluorescence microscopy analysis of COL1 and F-actin and Transwell and scratch healing assays. CONCLUSION: The CHA-PRF group exhibited greater potential to promote soft tissue regeneration by inducing cell proliferation, collagen synthesis, and migration in HGFs than the pure CHA or H-PRF group. CHA-PRF can serve as a great candidate for use alone or in combination with autografts in periodontal or peri-implant soft tissue regeneration.


Subject(s)
Cell Movement , Cell Proliferation , Cell Survival , Fibroblasts , Gingiva , Hyaluronic Acid , Platelet-Rich Fibrin , Regeneration , Hyaluronic Acid/pharmacology , Humans , Fibroblasts/drug effects , Gingiva/drug effects , Gingiva/cytology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Regeneration/drug effects , Time Factors , Cell Movement/drug effects , Reproducibility of Results , Fluorescent Antibody Technique , Real-Time Polymerase Chain Reaction , Collagen , Materials Testing , Wound Healing/drug effects , Biocompatible Materials/pharmacology , Collagen Type I/analysis
10.
Microbiol Spectr ; 12(7): e0216423, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38563791

ABSTRACT

African swine fever (ASF) is a highly fatal viral disease that poses a significant threat to domestic pigs and wild boars globally. In our study, we aimed to explore the potential of a multiplexed CRISPR-Cas system in suppressing ASFV replication and infection. By engineering CRISPR-Cas systems to target nine specific loci within the ASFV genome, we observed a substantial reduction in viral replication in vitro. This reduction was achieved through the concerted action of both Type II and Type III RNA polymerase-guided gRNA expression. To further evaluate its anti-viral function in vivo, we developed a pig strain expressing the multiplexable CRISPR-Cas-gRNA via germline genome editing. These transgenic pigs exhibited normal health with continuous expression of the CRISPR-Cas-gRNA system, and a subset displayed latent viral replication and delayed infection. However, the CRISPR-Cas9-engineered pigs did not exhibit a survival advantage upon exposure to ASFV. To our knowledge, this study represents the first instance of a living organism engineered via germline editing to assess resistance to ASFV infection using a CRISPR-Cas system. Our findings contribute valuable insights to guide the future design of enhanced viral immunity strategies. IMPORTANCE: ASFV is currently a devastating disease with no effective vaccine or treatment available. Our study introduces a multiplexed CRISPR-Cas system targeting nine specific loci in the ASFV genome. This innovative approach successfully inhibits ASFV replication in vitro, and we have successfully engineered pig strains to express this anti-ASFV CRISPR-Cas system constitutively. Despite not observing survival advantages in these transgenic pigs upon ASFV challenges, we did note a delay in infection in some cases. To the best of our knowledge, this study constitutes the first example of a germline-edited animal with an anti-virus CRISPR-Cas system. These findings contribute to the advancement of future anti-viral strategies and the optimization of viral immunity technologies.


Subject(s)
African Swine Fever Virus , African Swine Fever , CRISPR-Cas Systems , Gene Editing , Virus Replication , Animals , African Swine Fever Virus/genetics , Swine , African Swine Fever/virology , African Swine Fever/immunology , African Swine Fever/prevention & control , Gene Editing/methods , Virus Replication/genetics , Animals, Genetically Modified/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Genome, Viral/genetics
11.
Med Image Anal ; 95: 103173, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657424

ABSTRACT

Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Unsupervised Machine Learning , Humans , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Neural Networks, Computer
12.
Curr Res Food Sci ; 8: 100737, 2024.
Article in English | MEDLINE | ID: mdl-38681525

ABSTRACT

Vegetable and fruit classification can help all links of agricultural product circulation to better carry out inventory management, logistics planning and supply chain coordination, and improve the efficiency and response speed of the supply chain. However, the current classification of vegetables and fruits mainly relies on manual classification, which inevitably introduces the influence of human subjective factors, resulting in errors and misjudgments in the classification of vegetables and fruits. In response to this serious problem, this research proposes an efficient and reproducible novel model to classify multiple vegetables and fruits using handcrafted features. In the proposed model, preprocessing operations such as Gaussian filtering, grayscale and binarization are performed on the pictures of vegetables and fruits to improve the quality of the pictures; statistical texture features representing vegetable and fruit categories, wavelet transform features and shape features are extracted from the preprocessed images; the feature dimension reduction method of diffusion maps is used to reduce the redundant information of the combined features composed of statistical texture features, wavelet transform features and shape features; five effective machine learning methods were used to classify the types of vegetables and fruits. In this research, the proposed method was rigorously verified experimentally and the results show that the SVM classifier achieves 96.25% classification accuracy of vegetables and fruits, which proves that the proposed method is helpful to improve the quality and management level of vegetables and fruits, and provide strong support for agricultural production and supply chain.

13.
ACS Appl Mater Interfaces ; 16(9): 11194-11205, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38391151

ABSTRACT

Osteomyelitis is primarily caused by bacterial infections, and treatment requires precise sequential therapy, including antibacterial therapy in the early stages and bone defect reconstruction in later stages. We aimed to synthesize core-shell-structured zinc oxide/silver sulfide heterogeneous nanoparticles (ZnO/Ag2S NPs) using wet chemical methods. Using density functional theory and ultraviolet photoelectron spectroscopy, we showed that the optimized band structure endowed ZnO/Ag2S NPs with photodynamic properties under near-infrared (NIR) irradiation. Moreover, ZnO/Ag2S NPs exhibited a distinguished and stable photothermal performance within the same wavelength range. With single-wavelength irradiation, ZnO/Ag2S NPs achieved a bifunctional antibacterial effect during the acute stage of osteomyelitis. Antibacterial action was confirmed through colony-forming unit (CFU) counting assays, scanning electronic microscopy (SEM) observations, live-dead staining, growth curves, and quantitative real-time polymerase chain reaction (qPCR) assays. The Ag2S coating on the NPs realized the sustained release of zinc ions, thereby controlling the zinc ion concentration. Alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, and qPCR assays confirmed that the ZnO/Ag2S NPs exhibited good osteogenic effects in vitro. These effects were verified in an in vivo mouse femur model during chronic stages using micro-computed tomography (micro-CT) and histological analysis. This study provides a novel biocompatible core-shell nanomaterial for the two-phase treatment of osteomyelitis, contributing to versatile nanotherapies for infections and inflammation.


Subject(s)
Metal Nanoparticles , Nanoparticles , Osteomyelitis , Silver Compounds , Zinc Oxide , Animals , Mice , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , X-Ray Microtomography , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc , Osteomyelitis/diagnostic imaging , Osteomyelitis/drug therapy
14.
Platelets ; 35(1): 2316745, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38385327

ABSTRACT

Horizontal platelet-rich fibrin (H-PRF) contains a variety of bioactive growth factors and cytokines that play a key role in the process of tissue healing and regeneration. The blood collection tubes used to produce Solid-PRF (plasmatrix (PM) tubes) have previously been shown to have a great impact on the morphology, strength and composition of the final H-PRF clot. Therefore, modification to PM tubes is an important step toward the future optimization of PRF. To this end, we innovatively modified the inner wall surface of the PM tubes with plasma and adjusted the gas environment inside the PM tubes to prepare super-hydrophilic anaerobic plasmatrix tubes (SHAP tubes). It was made anaerobic for the preparation of H-PRF with the aim of improving mechanical strength and bioactivity. The findings demonstrated that an anaerobic environment stimulated platelet activation within the PRF tubes. After compression, the prepared H-PRF membrane formed a fibrous cross-linked network with high fracture strength, ideal degradation characteristics, in addition to a significant increase in size. Thereafter, the H-PRF membranes prepared by the SHAP tubes significantly promoted collagen synthesis of gingival fibroblast and the mineralization of osteoblasts while maintaining excellent biocompatibility, and advantageous antibacterial properties. In conclusion, the newly modified PRF tubes had better platelet activation properties leading to better mechanical strength, a longer degradation period, and better regenerative properties in oral cell types including gingival fibroblast and alveolar osteoblasts. It also improves the success rate of H-PRF preparation in patients with coagulation dysfunction and expands the clinical application scenario.


Why was the study done?   Direct anaerobic environment effects on fibrin formation have been insufficiently studied.The effect of hydrophilic change caused by nitrogen plasma treatment on H-PRF coagulation has not been fully studied.Optimal preparation of H-PRF in patients with poor coagulation function was needed in clinical application.What is new?  The coagulation of H-PRF correlated with the level of dissolved oxygen concentrations. Anaerobic environment significantly accelerates fibrin formation and platelet activation.Nitrogen plasma treatment can remarkably enhance the hydrophilicity of the inner surface of glass blood collecting tubes, thereby promoting the activation of platelets and the formation of fibrin network.The H-PRF prepared in the tubes with anaerobic environment and hydrophilic surface showed high fracture strength, promoted collagen synthesis of gingival fibroblast and the mineralization of osteoblasts.What is the impact?  The work is aimed at developing super-hydrophilic anaerobic plasmatrix tubes (SHAP tubes) for studying gas environment and hydrophilicity participation in fibrin formation in H-PRF preparation and investigating the influence of platelet activation in the anaerobic environment.This study provides a successful trial to convert the physiological process into biotechnological application. The SHAP tubes proposed within this article was an effective versatile H-PRF preparation device, which provided a promising alternative for tissue engineering.


Subject(s)
Platelet-Rich Fibrin , Humans , Anaerobiosis , Blood Coagulation , Wound Healing , Platelet Activation , Blood Platelets
15.
Anim Biotechnol ; 35(1): 2309956, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38315463

ABSTRACT

SNX29 is a potential functional gene associated with meat production traits. Previous studies have shown that SNX29 copy number variation (CNV) could be implicated with phenotype in goats. However, in Diannan small-ear (DSE) pigs, the genetic impact of SNX29 CNV on growth traits remains unclear. Therefore, this study investigated the associations between SNX29 CNVs (CNV10810 and CNV10811) and growth traits in 415 DSE pigs. The results revealed that the CNV10810 mutation was significantly associated with backfat thickness in DSE pigs at 12 and 15 months old (P < 0.05), while the CNV10811 mutation had significant effects on various growth traits at 6 and 12 months old, particularly for body weight, body height, back height and backfat thickness (P < 0.05 or P < 0.001). In conclusion, our results confirm that SNX29 CNV plays a role in regulating growth and development in pigs, thus suggesting its potential application for pig breeding programmes.


Subject(s)
DNA Copy Number Variations , Sorting Nexins , Swine/genetics , Animals , DNA Copy Number Variations/genetics , Sorting Nexins/genetics , Phenotype , Body Weight/genetics , Gene Dosage
16.
World J Surg Oncol ; 22(1): 39, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297355

ABSTRACT

BACKGROUND: The peritoneal cancer index (PCI) has been used to predict surgical outcomes for pseudomyxoma peritonei (PMP). The present study aimed to establish the optimal cutoff point for PCI to predict surgical resectability of PMP. METHODS: A total of 366 PMP patients were included. The patients were divided into low-grade and high-grade groups. Based on the completeness of the cytoreduction (CC) score, both low-grade and high-grade PMP patients were further divided into complete cytoreductive surgery (CRS) and maximal tumor debulking (MTD) subgroups. The ability to predict surgical resectability of total and selected PCI (regions 2 + 9 to 12) was analyzed through receiver operating characteristic (ROC) curves. RESULTS: Both total and selected PCI demonstrated excellent discriminative ability in predicting surgical resectability for low-grade PMP patients (n = 266), with the ROC-AUC of 0.940 (95% CI: 0.904-0.965) and 0.927 (95% CI: 0.889-0.955). The corresponding optimal cutoff point was 21 and 5, respectively. For high-grade PMP patients (n = 100), both total and selected PCI exhibited good performance in predicting surgical resectability, with the ROC-AUC of 0.894 (95% CI: 0.816-0.946) and 0.888 (95% CI: 0.810-0.943); correspondingly, the optimal cutoff point was 25 and 8, respectively. The discriminative ability between total and selected PCI in predicting surgical resectability did not show a statistical difference. CONCLUSIONS: Both total and selected PCI exhibited good performance and similarity in predicting complete surgical resection for both low-grade and high-grade PMP patients. However, the selected PCI was simpler and time-saving in clinical practice. In the future, new imaging techniques or predictive models may be developed to better predict PCI preoperatively, which might assist in confirming whether complete surgical resection can be achieved.


Subject(s)
Hyperthermia, Induced , Peritoneal Neoplasms , Pseudomyxoma Peritonei , Humans , Pseudomyxoma Peritonei/pathology , Peritoneal Neoplasms/pathology , Combined Modality Therapy , Cytoreduction Surgical Procedures , Retrospective Studies
17.
Adv Healthc Mater ; 13(7): e2302877, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38041691

ABSTRACT

The postoperative periodontal wound is in a complex physiological environment; the bacteria accumulation, the saliva stimulation, and the food residues retention will aggravate the wound deterioration. Commercial periodontal dressings have been widely used for postoperative periodontal treatment, and there still exists some problems, such as poor biocompatibility, weak adhesion, insufficient antibacterial, and anti-inflammatory properties. In this study, a chitosan-gallic acid graft copolymer (CS-GA) is synthesized as a potential periodontal dressing hydrogel. CS-GA possesses high swelling rate, adjustable degradability, self-healing ability, biocompatibility, strong adhesion ability, high mechanical properties and toughness. Furthermore, CS-GA has good scavenging ability for ·OH, O2 - , and 1 O2. And CS-GA has good inhibition effect on different bacterial through bacterial membranes damage. CS-GA can stop bleeding in a short time and adsorb erythrocytes to form physical blood clots to enhance the hemostatic performance. In addition, CS-GA can reduce inflammatory factors expressions, increase collagen fibers deposition, and neovascularization to promote wounds healing, which makes it as a potential periodontal dressing for postoperative tissue restoration.


Subject(s)
Chitosan , Humans , Chitosan/chemistry , Gallic Acid/pharmacology , Periodontal Dressings , Hydrogels/chemistry , Wound Healing , Polymers/pharmacology , Tissue Adhesions , Anti-Bacterial Agents/chemistry
18.
IEEE J Biomed Health Inform ; 28(2): 1012-1021, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38090820

ABSTRACT

The process of brain aging is intricate, encompassing significant structural and functional changes, including myelination and iron deposition in the brain. Brain age could act as a quantitative marker to evaluate the degree of the individual's brain evolution. Quantitative susceptibility mapping (QSM) is sensitive to variations in magnetically responsive substances such as iron and myelin, making it a favorable tool for estimating brain age. In this study, we introduce an innovative 3D convolutional network named Segmentation-Transformer-Age-Network (STAN) to predict brain age based on QSM data. STAN employs a two-stage network architecture. The first-stage network learns to extract informative features from the QSM data through segmentation training, while the second-stage network predicts brain age by integrating the global and local features. We collected QSM images from 712 healthy participants, with 548 for training and 164 for testing. The results demonstrate that the proposed method achieved a high accuracy brain age prediction with a mean absolute error (MAE) of 4.124 years and a coefficient of determination (R2) of 0.933. Furthermore, the gaps between the predicted brain age and the chronological age of Parkinson's disease patients were significantly higher than those of healthy subjects (P<0.01). We thus believe that using QSM-based predicted brain age offers a more reliable and accurate phenotype, with the potentiality to serve as a biomarker to explore the process of advanced brain aging.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Child, Preschool , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Mapping/methods , Aging , Iron
19.
IEEE Trans Med Imaging ; 43(4): 1539-1553, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38090839

ABSTRACT

Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at 5× and 6× accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Algorithms , Radionuclide Imaging
20.
J. appl. oral sci ; 32: e20230294, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1558234

ABSTRACT

Abstract Objective This study aims to develop a compound biomaterial to achieve effective soft tissue regeneration. Methodology Compound hyaluronic acid (CHA) and liquid horizontal-platelet-rich fibrin (H-PRF) were mixed at a ratio of 1:1 to form a CHA-PRF gel. Human gingival fibroblasts (HGFs) were used in this study. The effect of CHA, H-PRF, and the CHA-PRF gel on cell viability was evaluated by CCK-8 assays. Then, the effect of CHA, H-PRF, and the CHA-PRF gel on collagen formation and deposition was evaluated by qRT‒PCR and immunofluorescence analysis. Finally, qRT‒PCR, immunofluorescence analysis, Transwell assays, and scratch wound-healing assays were performed to determine how CHA, H-PRF, and the CHA-PRF gel affect the migration of HGFs. Results The combination of CHA and H-PRF shortened the coagulation time of liquid H-PRF. Compared to the pure CHA and H-PRF group, the CHA-PRF group exhibited the highest cell proliferation at all time points, as shown by the CCK-8 assay. Col1a and FAK were expressed at the highest levels in the CHA-PRF group, as shown by qRT‒PCR. CHA and PRF could stimulate collagen formation and HGF migration, as observed by fluorescence microscopy analysis of COL1 and F-actin and Transwell and scratch healing assays. Conclusion The CHA-PRF group exhibited greater potential to promote soft tissue regeneration by inducing cell proliferation, collagen synthesis, and migration in HGFs than the pure CHA or H-PRF group. CHA-PRF can serve as a great candidate for use alone or in combination with autografts in periodontal or peri-implant soft tissue regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL