Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 13(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36983731

ABSTRACT

BACKGROUND: Rotundine is an herbal medicine with anti-cancer effects. However, little is known about the anti-cancer effect of rotundine on colorectal cancer. Therefore, our study aimed to investigate the specific molecular mechanism of rotundine inhibition of colorectal cancer. METHODS: MTT and cell scratch assay were performed to investigate the effects of rotundine on the viability, migration, and invasion ability of SW480 cells. Changes in cell apoptosis were analyzed by flow cytometry. DEGs were detected by high-throughput sequencing after the action of rotundine on SW480 cells, and the DEGs were subjected to function enrichment analysis. Bioinformatics analyses were performed to screen out prognosis-related DEGs of COAD. Followed by enrichment analysis of prognosis-related DEGs. Furthermore, prognostic models were constructed, including ROC analysis, risk curve analysis, PCA and t-SNE, Nomo analysis, and Kaplan-Meier prognostic analysis. RESULTS: In this study, we showed that rotundine concentrations of 50 µM, 100 µM, 150 µM, and 200 µM inhibited the proliferation, migration, and invasion of SW480 cells in a time- and concentration-dependent manner. Rotundine does not induce SW480 cell apoptosis. Compared to the control group, high-throughput results showed that there were 385 DEGs in the SW480 group. And DEGs were associated with the Hippo signaling pathway. In addition, 16 of the DEGs were significantly associated with poorer prognosis in COAD, with MEF2B, CCDC187, PSD2, RGS16, PLXDC1, HELB, ASIC3, PLCH2, IGF2BP3, CLHC1, DNHD1, SACS, H1-4, ANKRD36, and ZNF117 being highly expressed in COAD and ARV1 being lowly expressed. Prognosis-related DEGs were mainly enriched in cancer-related pathways and biological functions, such as inositol phosphate metabolism, enterobactin transmembrane transporter activity, and enterobactin transport. Prognostic modeling also showed that these 16 DEGs could be used as predictors of overall survival prognosis in COAD patients. CONCLUSIONS: Rotundine inhibits the development and progression of colorectal cancer by regulating the expression of these prognosis-related genes. Our findings could further provide new directions for the treatment of colorectal cancer.

2.
Gene ; 820: 146251, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35131366

ABSTRACT

BACKGROUND: Zinc finger C3H1 domain-containing protein (ZFC3H1) is differentially expressed between primary tumor and the normal in most cancers. Additionally, a recent study has suggested that ZFC3H1 could serve as a novel marker for the prognosis of prostate adenocarcinoma (PRAD). However, the relationship between ZFC3H1 expression and the prognostic values in most tumors remains unclear. Our study is mainly for exploring the prognosis of ZFC3H1 in pan-cancer and for further discovering a potential therapeutics target. METHODS: Based on the clinical big data, we performed a pan-cancer analysis of ZFC3H1, including gene expression, survival prognosis, genetic alteration, protein phosphorylation, immune infiltration and enrichment analysis. In addition, Real-Time PCR and Western Blot were used to further confirm the role of ZFC3H1 in the colorectal cancer. RESULTS: We found that ZFC3H1 expression was connected with the prognosis of multiple malignant tumors. Furthermore, we also observed that ZFC3H1 was highly expressed in colorectal cancer through Real-Time PCR and Western Blot. The primary tumors presented higher phosphorylation level of the S655 site in lung adenocarcinoma, colon adenocarcinoma and uterine corpus endometrial carcinoma. ZFC3H1 expression was positively correlated with the immune infiltration of Cancer-associated fibroblasts (CAFs) in some tumors, such as liver hepatocellular carcinoma. And RNA surveillance pathways may be closely associated with the occurrence of tumors. CONCLUSIONS: Our study first reveals that ZFC3H1 could serve as a novel prognostic biomarker of pan-cancer, especially colorectal cancer.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Transcription Factors/metabolism , Zinc Fingers , Computational Biology , Databases, Genetic , Humans , Neoplasms/diagnosis , Prognosis
3.
Plant Biotechnol J ; 19(12): 2544-2560, 2021 12.
Article in English | MEDLINE | ID: mdl-34375461

ABSTRACT

Azalea belongs to Rhododendron, which is one of the largest genera of flowering plants and is well known for the diversity and beauty in its more than 1000 woody species. Rhododendron contains two distinct groups: the most high-altitude and a few low-altitude species; however, the former group is difficult to be domesticated for urban landscaping, and their evolution and adaptation are little known. Rhododendron ovatum has broad adaptation in low-altitude regions but possesses evergreen characteristics like high-altitude species, and it has floral fragrance that is deficient in most cultivars. Here we report the chromosome-level genome assembly of R. ovatum, which has a total length of 549 Mb with scaffold N50 of 41 Mb and contains 41 264 predicted genes. Genomic micro-evolutionary analysis of R. ovatum in comparison with two high-altitude Rhododendron species indicated that the expansion genes in R. ovatum were significantly enriched in defence responses, which may account for its adaptability in low altitudes. The R. ovatum genome contains much more terpene synthase genes (TPSs) compared with the species that lost floral fragrance. The subfamily b members of TPS are involved in the synthesis of sesquiterpenes as well as monoterpenes and play a major role in flora scent biosynthesis and defence responses. Tandem duplication is the primary force driving expansion of defence-responsive genes for extensive adaptability to the low-altitude environments. The R. ovatum genome provides insights into low-altitude adaptation and gain or loss of floral fragrance for Rhododendron species, which are valuable for alpine plant domestication and floral scent breeding.


Subject(s)
Rhododendron , Altitude , Flowers/genetics , Odorants , Phylogeny , Plant Breeding , Rhododendron/genetics
4.
Discov Oncol ; 12(1): 60, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-35201499

ABSTRACT

BACKGROUND: Family with sequence similarity 65 member A (FAM65A), also known as RIPOR1, is differentially expressed between human tumor and non-tumor tissues in kinds of cancers. In addition, it was reported that the product of FAM65A may be a biomarker for cholangiocarcinoma patients. However, there is still no evidence on the relationship between the FAM65A and different types of tumors. Our study is mainly for exploring the prognostic values of FAM65A in pan-cancer and for further discovering a potential therapeutics target. METHODS: We analyzed FAM65A expression, prognostic values, genetic alteration, protein phosphorylation, immune infiltration and enrichment analysis across different types of human malignant tumors based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Additionally, Real-Time PCR (RT-qPCR) was performed to further confirm the roles of FAM65A in the pathogenesis of colorectal cancer. RESULTS: We found that FAM65A expression was associated with the prognosis of multiple human tumors, especially colorectal cancer. Moreover, we also observed that FAM65A was highly expressed in colorectal cancer through RT-qPCR. We observed that decreasing phosphorylation level of the S351 locus in colon adenocarcinoma, uterine corpus endometrial carcinoma and lung adenocarcinoma. And the expression of FAM65A was positively related to cancer-associated fibroblasts (CAFs) infiltration in many tumors, such as colon adenocarcinoma. Therefore, FAM65A may be a potential prognostic biomarker of human tumors.

5.
Sci Rep ; 9(1): 15079, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31636314

ABSTRACT

Enlarging the planting area of economic plants, such as the "Southward Planting of Herbaceous Peony" (Paeonia lactiflora. Pall), is significant for improving people's lives. Peony is globally known as an ornamental because of gorgeous flowers and is mainly cultivated in the temperate regions with relatively cool and dry climates in the Northern Hemisphere. Promoting the landscape application of peony to the lower latitude regions is difficult because of the hot-humid climate. In this study, 29 northern peony cultivars and a unique Chinese southern peony, 'Hang Baishao', were introduced to Hangzhou, located in the central subtropics. Annual growth cycles, resistances and dormancy durations were measured, and crossbreeding between the southern and northern peonies was performed for six years, from 2012 to 2017. Based on data collected from the long-running quantitative observation (LQO), a multi-criteria decision making (MCDM) system was established to evaluate the comprehensive planting performance of these 30 cultivars in the central subtropics. 'Qihua Lushuang', 'Hang Baishao' and 'Meiju' were highly recommended, while 'Zhuguang' and 'Qiaoling' were scarcely recommended for the Hangzhou landscape. This study highlights the dependability and comprehensiveness of integrating the LQO and MCDM approaches for evaluating the introduction performance of ornamental plants.


Subject(s)
Decision Making , Paeonia/physiology , Disease Resistance , Flowers/physiology , Fruit/physiology , Hot Temperature , Paeonia/anatomy & histology , Paeonia/growth & development , Paeonia/microbiology , Plant Diseases/microbiology , Plant Dormancy/physiology
6.
PLoS One ; 14(6): e0218164, 2019.
Article in English | MEDLINE | ID: mdl-31194806

ABSTRACT

Expanding the southern range of herbaceous peony (Paeonia lactiflora Pall.) is a meaningful and worthwhile horticultural endeavor in the Northern Hemisphere. However, high temperatures in winter seriously hinder the bud dormancy release and flowering of peony in the more southern areas of subtropical and tropical regions. Resource introduction and hybridization can contribute to creating new cultivars with high adaptability in a warmer winter climate. In this study, three representative cultivars of P. lactiflora were screened for flowering capabilities and their annual growth cycles were observed to provide information needed for hybridization. Among these three cultivars, 'Hang Baishao' is the best adapted cultivar for southern growing regions and is unique in its ability to thrive in southern areas of N 30°00'. Pollen viability of 'Hang Baishao' was 55.60% based on five measuring methods, which makes it an excellent male parent in hybridization. Hybrid plants among these three cultivars grew well, but all of their flower buds aborted. Additionally, the ability of three growth regulators that advance the flowering of 'Hang Baishao' to promote an indoor cultivation strategy for improving peony application as a potted or cut-flower plant was tested. 5-azacytidine could impact the growth of 'Hang Baishao' and induce dwarfism and small flowers but not advance the flowering time. Gibberellin A3 promoted the sprouting and growth significantly, but all plants eventually withered. Chilling at 0-4°C for four weeks and irrigation with 300 mg/L humic acid was the optimal combination used to hasten flowering and ensure flowering quality simultaneously. These results can lay the foundation for future studies on the chilling requirement trait, bud dormancy release and key functional gene exploration of herbaceous peony. Additionally, this study can also provide guidance for expanding the range of economically important plants with the winter dormancy trait to the low-latitude regions.


Subject(s)
Hybridization, Genetic/genetics , Nucleic Acid Hybridization/genetics , Paeonia/genetics , Flowers/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Transcriptome/genetics
7.
Sci Rep ; 8(1): 3248, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29459698

ABSTRACT

Maize rough dwarf disease (MRDD) is a severe viral disease of maize that occurs worldwide, particularly in the summer maize-growing areas in China, resulting in yield losses and quality deterioration in susceptible maize varieties. An effective solution to control MRDD is to use resistance genes to improve the behavior of susceptible genotypes. Here, we employed maize F2 populations derived from a cross between susceptible line S221 and resistant line K36 for the deep sequencing of the two DNA pools containing extremely resistant and susceptible F2 individuals, and used traditional linkage analysis to locate the resistance-related genomic region. The results showed that MRDD resistance in K36 was controlled by a single dominant locus, and an associated region was identified within the genomic interval of 68,396,487 bp and 69,523,478 bp on chromosome 6. Two simple sequence repeat (SSR) markers 6F29R29 and 6F34R34 were tightly linked to the MRDD resistance locus. The findings of the present study improve our understanding of the inheritance patterns of MRDD resistance, and should inform MRDD-resistant maize breeding programs.


Subject(s)
Disease Resistance , Genetic Loci , Plant Diseases , Zea mays/genetics , Zea mays/immunology , China , Crosses, Genetic , Genes, Dominant , Genetic Linkage , Genotype , High-Throughput Nucleotide Sequencing
8.
BMC Plant Biol ; 17(1): 262, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273002

ABSTRACT

BACKGROUND: The artificial enlargement of the planting area and ecological amplitude of ornamentals for horticultural and landscape applications are significant. Herbaceous peony (Paeonia lactiflora Pall.) is a world-famous ornamental with attractive and fragrant flowers and is mainly planted in temperate and cool areas. Comparatively higher winter temperatures in the subtropical and tropical Northern Hemisphere result in a deficit of chilling accumulation for bud dormancy release, which severely hinders "The southward plantation of herbaceous peony". Studies on the dormancy, chilling requirement (CR) and relevant molecular mechanisms of peony are needed to enhance our ability to extend the range of this valuable horticultural species. RESULTS: Based on natural and artificial chilling experiments, and chilling hour (CH) and chilling unit (CU) evaluation systems, the lowest CR of 'Hang Baishao' was between 504.00 and 672.00 CHs and the optimal CR was 672.00 CHs and 856.08 CUs for achieving strong sprouting, growth and flowering performance. Transcriptome sequencing and gene identification by RNA-Seq were performed on 'Hang Baishao' buds during the dormancy and sprouting periods. Six gene libraries were constructed, and 66 temperature- and photoperiod-associated unigenes were identified as the potential candidate genes that may regulate or possibly determine CR characteristics. The difference in the expression patterns of SUPPRESSPOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) between the winters of 2012-2013 and 2015-2016, and the difference of CR fulfillment periods also between these two winters represented the interesting congruent relationships. This correlation was also observed for WRKY DNA-BINDING PROTEIN 33 (WRKY 33). CONCLUSIONS: Combined with the results acquired from all of experiments, 'Hang Baishao' was confirmed to be a superb peony resource that have significantly low CR characteristics. The two genes of SOC1 and WRKY33 are likely involved in determining the CR amount and fulfillment period of 'Hang Baishao'. HEAT SHOCK PROTEIN, OSMOTIN and TIMING OF CAB EXPRESSION 1 also deserve attention for the CR research. This study could contribute to the knowledge of the deep factors and mechanisms that regulate CR characteristics, and may be beneficial for breeding new germplasms that have low CRs for landscape or horticulture applications in subtropical regions.


Subject(s)
Cold Temperature , Flowers/growth & development , Flowers/genetics , Paeonia/physiology , Transcriptome , Paeonia/genetics
9.
Int J Genomics ; 2015: 231358, 2015.
Article in English | MEDLINE | ID: mdl-26609518

ABSTRACT

A large number of immune receptors consist of nucleotide binding site-leucine rich repeat (NBS-LRR) proteins and leucine rich repeat-receptor-like kinases (LRR-RLK) that play a crucial role in plant disease resistance. Although many NBS-LRR genes have been previously identified in Zea mays, there are no reports on identifying NBS-LRR genes encoded in the N-terminal Toll/interleukin-1 receptor (TIR) motif and identifying genome-wide LRR-RLK genes. In the present study, 151 NBS-LRR genes and 226 LRR-RLK genes were identified after performing bioinformatics analysis of the entire maize genome. Of these identified genes, 64 NBS-LRR genes and four TIR-NBS-LRR genes were identified for the first time. The NBS-LRR genes are unevenly distributed on each chromosome with gene clusters located at the distal end of each chromosome, while LRR-RLK genes have a random chromosomal distribution with more paired genes. Additionally, six LRR-RLK/RLPs including FLS2, PSY1R, PSKR1, BIR1, SERK3, and Cf5 were characterized in Zea mays for the first time. Their predicted amino acid sequences have similar protein structures with their respective homologues in other plants, indicating that these maize LRR-RLK/RLPs have the same functions as their homologues act as immune receptors. The identified gene sequences would assist in the study of their functions in maize.

SELECTION OF CITATIONS
SEARCH DETAIL
...