Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38270919

ABSTRACT

The stability of synchronous operation is directly related to the time jitter of the gallium arsenide photoconductive semiconductor switch (GaAs PCSS). In this work, a numerical model for the switching jitter of avalanche GaAs PCSS is established, and the impacts of triggering optical energy and bias electric field on the switching jitter are investigated numerically based on an equivalent bulk current channel. The proposed numerical model predicts well the changing characteristics of switching time as well as switching jitter, which has been demonstrated by the experimental results. On this basis, the theory of multiple avalanche domains is introduced to compare the domain evolutions influenced by the bias electric field and triggering optical energy. The results indicate that the reduction of switching jitter is significantly determined by the accelerated formation and evolution of avalanche domains, which provides a good explanation of the jitter mechanism of switching time.

2.
Biochem J ; 480(17): 1379-1395, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37492947

ABSTRACT

Gain-of-function missense variants in the cardiac ryanodine receptor (RyR2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT), whereas RyR2 loss-of-function missense variants cause Ca2+ release deficiency syndrome (CRDS). Recently, truncating variants in RyR2 have also been associated with ventricular arrhythmias (VAs) and sudden cardiac death. However, there are limited insights into the potential clinical relevance and in vitro functional impact of RyR2 truncating variants. We performed genetic screening of patients presenting with syncope, VAs, or unexplained sudden death and in vitro characterization of the expression and function of RyR2 truncating variants in HEK293 cells. We identified two previously unknown RyR2 truncating variants (Y4591Ter and R4663Ter) and one splice site variant predicted to result in a frameshift and premature termination (N4717 + 15Ter). These 3 new RyR2 truncating variants and a recently reported RyR2 truncating variant, R4790Ter, were generated and functionally characterized in vitro. Immunoprecipitation and immunoblotting analyses showed that all 4 RyR2 truncating variants formed heteromers with the RyR2-wildtype (WT) protein. Each of these C-terminal RyR2 truncations was non-functional and suppressed [3H]ryanodine binding to RyR2-WT and RyR2-WT mediated store overload induced spontaneous Ca2+ release activity in HEK293 cells. The expression of these RyR2 truncating variants in HEK293 cells was markedly reduced compared with that of the full-length RyR2 WT protein. Our data indicate that C-terminal RyR2 truncating variants are non-functional and can exert a dominant negative impact on the function of the RyR2 WT protein through formation of heteromeric WT/truncation complex.


Subject(s)
Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular , Humans , Arrhythmias, Cardiac/genetics , Calcium/metabolism , HEK293 Cells , Mutation , Phenotype , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism
3.
Chem Commun (Camb) ; 59(63): 9599-9602, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37461336

ABSTRACT

We report that the core sequence of amyloid ß (Aß) peptide, KLVFF, when equipped with a C-terminal cysteine residue, exhibited an extremely low minimum hydrogelation concentration of 0.05 wt% in the presence of Ag+ in pH 5 buffer, with this concentration 2 orders of magnitude lower than that of the pentapeptide itself. The CD signal of the Ag+-L-KLVFFC hydrogel was observed to be sensitive to the early-stage aggregation of amyloid ß peptide.


Subject(s)
Amyloid beta-Peptides , Cysteine , Amyloid beta-Peptides/chemistry , Polymers , Hydrogels , Peptide Fragments/chemistry , Amyloid/chemistry
4.
Circ Res ; 133(2): 177-192, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37325910

ABSTRACT

BACKGROUND: A loss-of-function cardiac ryanodine receptor (RyR2) mutation, I4855M+/-, has recently been linked to a new cardiac disorder termed RyR2 Ca2+ release deficiency syndrome (CRDS) as well as left ventricular noncompaction (LVNC). The mechanism by which RyR2 loss-of-function causes CRDS has been extensively studied, but the mechanism underlying RyR2 loss-of-function-associated LVNC is unknown. Here, we determined the impact of a CRDS-LVNC-associated RyR2-I4855M+/- loss-of-function mutation on cardiac structure and function. METHODS: We generated a mouse model expressing the CRDS-LVNC-associated RyR2-I4855M+/- mutation. Histological analysis, echocardiography, ECG recording, and intact heart Ca2+ imaging were performed to characterize the structural and functional consequences of the RyR2-I4855M+/- mutation. RESULTS: As in humans, RyR2-I4855M+/- mice displayed LVNC characterized by cardiac hypertrabeculation and noncompaction. RyR2-I4855M+/- mice were highly susceptible to electrical stimulation-induced ventricular arrhythmias but protected from stress-induced ventricular arrhythmias. Unexpectedly, the RyR2-I4855M+/- mutation increased the peak Ca2+ transient but did not alter the L-type Ca2+ current, suggesting an increase in Ca2+-induced Ca2+ release gain. The RyR2-I4855M+/- mutation abolished sarcoplasmic reticulum store overload-induced Ca2+ release or Ca2+ leak, elevated sarcoplasmic reticulum Ca2+ load, prolonged Ca2+ transient decay, and elevated end-diastolic Ca2+ level upon rapid pacing. Immunoblotting revealed increased level of phosphorylated CaMKII (Ca2+-calmodulin dependent protein kinases II) but unchanged levels of CaMKII, calcineurin, and other Ca2+ handling proteins in the RyR2-I4855M+/- mutant compared with wild type. CONCLUSIONS: The RyR2-I4855M+/- mutant mice represent the first RyR2-associated LVNC animal model that recapitulates the CRDS-LVNC overlapping phenotype in humans. The RyR2-I4855M+/- mutation increases the peak Ca2+ transient by increasing the Ca2+-induced Ca2+ release gain and the end-diastolic Ca2+ level by prolonging Ca2+ transient decay. Our data suggest that the increased peak-systolic and end-diastolic Ca2+ levels may underlie RyR2-associated LVNC.


Subject(s)
Heart Defects, Congenital , Ryanodine Receptor Calcium Release Channel , Animals , Humans , Mice , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Heart Defects, Congenital/metabolism , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
5.
Circ Res ; 132(2): e59-e77, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36583384

ABSTRACT

BACKGROUND: PKA (protein kinase A)-mediated phosphorylation of cardiac RyR2 (ryanodine receptor 2) has been extensively studied for decades, but the physiological significance of PKA phosphorylation of RyR2 remains poorly understood. Recent determination of high-resolution 3-dimensional structure of RyR2 in complex with CaM (calmodulin) reveals that the major PKA phosphorylation site in RyR2, serine-2030 (S2030), is located within a structural pathway of CaM-dependent inactivation of RyR2. This novel structural insight points to a possible role of PKA phosphorylation of RyR2 in CaM-dependent inactivation of RyR2, which underlies the termination of Ca2+ release and induction of cardiac Ca2+ alternans. METHODS: We performed single-cell endoplasmic reticulum Ca2+ imaging to assess the impact of S2030 mutations on Ca2+ release termination in human embryonic kidney 293 cells. Here we determined the role of the PKA site RyR2-S2030 in a physiological setting, we generated a novel mouse model harboring the S2030L mutation and carried out confocal Ca2+ imaging. RESULTS: We found that mutations, S2030D, S2030G, S2030L, S2030V, and S2030W reduced the endoplasmic reticulum luminal Ca2+ level at which Ca2+ release terminates (the termination threshold), whereas S2030P and S2030R increased the termination threshold. S2030A and S2030T had no significant impact on release termination. Furthermore, CaM-wild-type increased, whereas Ca2+ binding deficient CaM mutant (CaM-M [a loss-of-function CaM mutation with all 4 EF-hand motifs mutated]), PKA, and Ca2+/CaMKII (CaM-dependent protein kinase II) reduced the termination threshold. The S2030L mutation abolished the actions of CaM-wild-type, CaM-M, and PKA, but not CaMKII, in Ca2+ release termination. Moreover, we showed that isoproterenol and CaM-M suppressed pacing-induced Ca2+ alternans and accelerated Ca2+ transient recovery in intact working hearts, whereas CaM-wild-type exerted an opposite effect. The impact of isoproterenol was partially and fully reversed by the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide and the CaMKII inhibitor N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide individually and together, respectively. S2030L abolished the impact of CaM-wild-type, CaM-M, and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide-sensitive component, but not the N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide-sensitive component, of isoproterenol.


Subject(s)
Ryanodine Receptor Calcium Release Channel , Serine , Mice , Animals , Humans , Isoproterenol/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , Serine/metabolism , Serine/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Calmodulin/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Isoquinolines/pharmacology , Sulfonamides/pharmacology , Calcium/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism
6.
BMC Neurol ; 22(1): 359, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36127663

ABSTRACT

In the present study, we explored multiple plasma factors to predict the outcomes of patients with AIS after IVT. Fifty AIS patients who received IVT with alteplase were recruited and divided into two groups according to their NIHSS scores. Serum from all subjects was collected to quantitatively analyze the levels of different plasma factors, IL-6, MMP-9, ADAMTS13, TNC, GSN and TRX, using Luminex assays or ELISA measurements. Compared with the levels assessed at the onset of AIS, the levels of MMP-9 (P < 0.001), ADAMTS13 (P < 0.001), and TRX (P < 0.001) significantly decreased after IVT. The level of IL-6 was significantly increased in the NIHSS > 5 group at admission (P < 0.001) compared to the NIHSS ≤ 5 group. AIS patients with a poor prognosis had lower levels of ADAMTS13 at 72 h post-IVT compared with patients with a good prognosis (P = 0.021). IL-6 also was notably higher in the poor outcome group (P = 0.012). After adjusting for confounders, ADAMTS13 at 72 h post-IVT was an independent protective factor for prognosis in AIS patients with an adjusted OR of 0.07 (P = 0.049), whereas IL-6 was an independent predictor of risk for AIS patients with an adjusted OR of 1.152 (P = 0.028). IVT decreased MMP-9, ADAMTS13, and TRX levels in the plasma of AIS patients. Patients with a NIHSS score of less than 5 exhibited lower IL-6 levels, indicating that increased levels of IL-6 correlated with AIS severity after IVT. Therefore, IL-6 and ADAMTS13 might be useful plasma markers to predict the prognosis in AIS patients at 90-days after IVT.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Brain Ischemia/drug therapy , Fibrinolytic Agents/therapeutic use , Humans , Interleukin-6 , Matrix Metalloproteinase 9 , Prognosis , Stroke/therapy , Tissue Plasminogen Activator/therapeutic use
7.
Front Genet ; 13: 897083, 2022.
Article in English | MEDLINE | ID: mdl-36092895

ABSTRACT

Background: Due to the highly variable prognosis of low-grade gliomas (LGGs), it is important to find robust biomarkers for predicting clinical outcomes. Aging cancer-associated fibroblasts (CAFs) within the senescent stroma of a tumor microenvironment (TME) have been recently reported to play a key role in tumor development. However, there are few studies focusing on this topic in gliomas. Methods and Results: Based on the transcriptome data from TCGA and CGGA databases, we identified aging CAF-related genes (ACAFRGs) in LGGs by the weighted gene co-expression network analysis (WGCNA) method, followed by which LGG samples were classified into two aging CAF-related gene clusters with distinct prognosis and characteristics of the TME. Machine learning algorithms were used to screen out eight featured ACAFRGs to characterize two aging CAF-related gene clusters, and a nomogram model was constructed to predict the probability of gene cluster A for each LGG sample. Then, a powerful aging CAF scoring system was developed to predict the prognosis and response to immune checkpoint blockage therapy. Finally, the ACAFRGs were verified in two glioma-related external datasets. The performance of the aging CAF score in predicting the immunotherapy response was further validated in two independent cohorts. We also confirmed the expression of ACAFRGs at the protein level in glioma tissues through the Human Protein Atlas website and Western blotting analysis. Conclusion: We developed a robust aging CAF scoring system to predict the prognosis and immunotherapy response in LGGs. Our findings may provide new targets for therapeutics and contribute to the exploration focusing on aging CAFs.

8.
Sci Rep ; 12(1): 5457, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361903

ABSTRACT

Aging tumor microenvironment (aging TME) is emerging as a hot spot in cancer research for its significant roles in regulation of tumor progression and tumor immune response. The immune and stromal scores of low-grade gliomas (LGGs) from TCGA and CGGA databases were determined by using ESTIMATE algorithm. Differentially expressed genes (DEGs) between high and low immune/stromal score groups were identified. Subsequently, weighted gene co-expression network analysis (WGCNA) was conducted to screen out aging TME related signature (ATMERS). Based on the expression patterns of ATMERS, LGGs were classified into two clusters with distinct prognosis via consensus clustering method. Afterwards, the aging TME score for each sample was calculated via gene set variation analysis (GSVA). Furthermore, TME components were quantified by MCP counter and CIBERSORT algorithm. The potential response to immunotherapy was evaluated by Tumor Immune Dysfunction and Exclusion analysis. We found that LGG patients with high aging TME scores showed poor prognosis, exhibited an immunosuppressive phenotype and were less likely to respond to immunotherapy compared to those with low scores. The predictive performance of aging TME score was verified in three external datasets. Finally, the expression of ATMERS in LGGs was confirmed at protein level through the Human Protein Atlas website and western blot analysis. This novel aging TME-based scoring system provided a robust biomarker for predicting the prognosis and immunotherapy response in LGGs.


Subject(s)
Glioma , Tumor Microenvironment , Aging , Glioma/genetics , Glioma/pathology , Glioma/therapy , Humans , Immunotherapy , Prognosis , Tumor Microenvironment/genetics
9.
Exp Cell Res ; 415(1): 113113, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35339472

ABSTRACT

Despite significant progress in the treatment of myeloma, multiple myeloma (MM) remains an incurable hematological malignancy due to cell adhesion-mediated drug resistance (CAM-DR) phenotype. However, data on the molecular mechanisms underlying the CAM-DR remains scanty. Here, we identified a miRNA-mRNA regulatory network in myeloma cells that are directly adherent to bone marrow stromal cells (BMSCs). Our data showed that the BMSCs up-regulated miR-30a-5p and down-regulated BCL2L11 at both mRNA and protein level in the myeloma cells. Besides, luciferase reporter genes demonstrated direct interaction between miR-30a-5p and BCL2L11 gene. Moreover, the BMSCs activated NF-ΚB signaling pathway in myeloma cells and the NF-κB P65 was shown to directly bind the miR-30a-5p promoter region. Moreover, suppression of the miR-30a-5p or upregulation of the BCL2L11 promoted apoptosis of the myeloma cells independent of the BMSCs, thus suggesting clinical significance of miR-30a-5p inhibitor and PLBCL2L11 plasmid in CAM-DR. Together, our data demonstrated the role of P65-miR-30a-5p-BCL2L11 loop in CAM-DR myeloma cells. These findings give new insights into the role of tumor microenvironment in the treatment of patients with myeloma.


Subject(s)
MicroRNAs , Multiple Myeloma , Bcl-2-Like Protein 11/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Multiple Myeloma/genetics , NF-kappa B/metabolism , RNA, Messenger , Tumor Microenvironment/genetics
10.
Sci Rep ; 12(1): 1872, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115572

ABSTRACT

Differentiation states of glioma cells correlated with prognosis and tumor-immune microenvironment (TIME) in patients with gliomas. We aimed to identify differentiation related genes (DRGs) for predicting the prognosis and immunotherapy response in patients with gliomas. We identified three differentiation states and the corresponding DRGs in glioma cells through single-cell transcriptomics analysis. Based on the DRGs, we separated glioma patients into three clusters with distinct clinicopathological features in combination with bulk RNA-seq data. Weighted correlation network analysis, univariate cox regression analysis and least absolute shrinkage and selection operator analysis were involved in the construction of the prognostic model based on DRGs. Distinct clinicopathological characteristics, TIME, immunogenomic patterns and immunotherapy responses were identified across three clusters. A DRG signature composing of 12 genes were identified for predicting the survival of glioma patients and nomogram model integrating the risk score and multi-clinicopathological factors were constructed for clinical practice. Patients in high-risk group tended to get shorter overall survival and better response to immune checkpoint blockage therapy. We obtained 9 candidate drugs through comprehensive analysis of the differentially expressed genes between the low and high-risk groups in the model. Our findings indicated that the risk score may not only contribute to the determination of prognosis but also facilitate in the prediction of immunotherapy response in glioma patients.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Gene Expression Profiling , Glioma/genetics , RNA-Seq , Single-Cell Analysis , Transcriptome , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Clinical Decision-Making , Databases, Genetic , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioma/immunology , Glioma/pathology , Glioma/therapy , Humans , Immunotherapy , Nomograms , Predictive Value of Tests , Treatment Outcome
11.
JAMA Cardiol ; 7(1): 84-92, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34730774

ABSTRACT

Importance: Calcium-release deficiency syndrome (CRDS), which is caused by loss-of-function variants in cardiac ryanodine receptor 2 (RyR2), is an emerging cause of ventricular fibrillation. However, the lack of complex polymorphic/bidirectional ventricular tachyarrhythmias during exercise stress testing (EST) may distinguish it from catecholaminergic polymorphic ventricular tachycardia (CPVT). Recently, in the first clinical series describing the condition, mouse and human studies showed that the long-burst, long-pause, short-coupled ventricular extra stimulus (LBLPS) electrophysiology protocol reliably induced CRDS ventricular arrhythmias. Data from larger populations with CRDS and its associated spectrum of disease are lacking. Objective: To further insight into CRDS through international collaboration. Design, Setting, and Participants: In this multicenter observational cohort study, probands with unexplained life-threatening arrhythmic events and an ultrarare RyR2 variant were identified. Variants were expressed in HEK293 cells and subjected to caffeine stimulation to determine their functional impact. Data were collected from September 1, 2012, to March 6, 2021, and analyzed from August 9, 2015, to March 6, 2021. Main Outcomes and Measures: The functional association of RyR2 variants found in putative cases of CRDS and the associated clinical phenotype(s). Results: Of 10 RyR2 variants found in 10 probands, 6 were loss-of-function, consistent with CRDS (p.E4451del, p.F4499C, p.V4606E, p.R4608Q, p.R4608W, and p.Q2275H) (in 4 [67%] male and 2 [33%] female probands; median age at presentation, 22 [IQR, 8-34] years). In 5 probands with a documented trigger, 3 were catecholamine driven. During EST, 3 probands with CRDS had no arrhythmias, 1 had a monomorphic couplet, and 2 could not undergo EST (deceased). Relatives of the decedents carrying the RyR2 variant did not have EST results consistent with CPVT. After screening 3 families, 13 relatives were diagnosed with CRDS, including 3 with previous arrhythmic events (23%). None had complex ventricular tachyarrhythmias during EST. Among the 19 confirmed cases with CRDS, 10 had at least 1 life-threatening event at presentation and/or during a median follow-up of 7 (IQR, 6-18) years. Two of the 3 device-detected ventricular fibrillation episodes were induced by a spontaneous LBLPS-like sequence. ß-Blockers were used in 16 of 17 surviving patients (94%). Three of 16 individuals who were reportedly adherent to ß-blocker therapy (19%) had breakthrough events. Conclusions and Relevance: The results of this study suggest that calcium-release deficiency syndrome due to RyR2 loss-of-function variants mechanistically and phenotypically differs from CPVT. Ventricular fibrillation may be precipitated by a spontaneous LBLPS-like sequence of ectopy; however, CRDS remains difficult to recognize clinically. These data highlight the need for better diagnostic tools and treatments for this emerging condition.


Subject(s)
Death, Sudden, Cardiac/prevention & control , Mutation , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular/genetics , Adolescent , Adult , Child , Death, Sudden, Cardiac/epidemiology , Electrocardiography , Female , Follow-Up Studies , Global Health , Humans , Male , Morbidity/trends , Phenotype , Prospective Studies , Retrospective Studies , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/epidemiology , Tachycardia, Ventricular/metabolism , Young Adult
12.
Circ Genom Precis Med ; 15(1): e003589, 2022 02.
Article in English | MEDLINE | ID: mdl-34949103

ABSTRACT

BACKGROUND: A novel familial arrhythmia syndrome, cardiac ryanodine receptor (RyR2) calcium release deficiency syndrome (CRDS), has recently been described. We evaluated a large and well characterized family to assess provocation testing, risk factor stratification and response to therapy in CRDS. METHODS: We present a family with multiple unheralded sudden cardiac deaths and aborted cardiac arrests, primarily in children and young adults, with no clear phenotype on standard clinical testing. RESULTS: Genetic analysis, including whole genome sequencing, firmly established that a missense mutation in RYR2, Ala4142Thr, was the underlying cause of disease in the family. Functional study of the variant in a cell model showed RyR2 loss-of-function, indicating that the family was affected by CRDS. EPS (Electrophysiological Study) was undertaken in 9 subjects known to carry the mutation, including a survivor of aborted sudden cardiac death, and the effects of flecainide alone and in combination with metoprolol were tested. There was a clear gradation in inducibility of nonsustained and sustained ventricular arrhythmia between subjects at EPS, with the survivor of aborted sudden cardiac death being the most inducible subject. Administration of flecainide substantially reduced arrhythmia inducibility in this subject and abolished arrhythmia in all others. Finally, the effects of additional metoprolol were tested; it increased inducibility in 4/9 subjects. CONCLUSIONS: The Ala4142Thr mutation of RYR2 causes the novel heritable arrhythmia syndrome CRDS, which is characterized by familial sudden death in the absence of prior symptoms or a recognizable phenotype on ambulatory monitoring or exercise stress testing. We increase the experience of a specific EPS protocol in human subjects and show that it is helpful in establishing the clinical status of gene carriers, with potential utility for risk stratification. Our data provide evidence that flecainide is protective in human subjects with CRDS, consistent with the effect previously shown in a mouse model.


Subject(s)
Channelopathies , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular , Animals , Arrhythmias, Cardiac/complications , Calcium/metabolism , Death, Sudden, Cardiac/etiology , Flecainide , Humans , Metoprolol , Mice , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular/genetics
14.
J Neurosci Res ; 99(11): 2906-2921, 2021 11.
Article in English | MEDLINE | ID: mdl-34352124

ABSTRACT

Increasing evidence suggests that Alzheimer's disease (AD) progression is driven by a vicious cycle of soluble ß-amyloid (Aß)-induced neuronal hyperactivity. Thus, breaking this vicious cycle by suppressing neuronal hyperactivity may represent a logical approach to stopping AD progression. In support of this, we have recently shown that genetically and pharmacologically limiting ryanodine receptor 2 (RyR2) open time prevented neuronal hyperactivity, memory impairment, dendritic spine loss, and neuronal cell death in a rapid, early onset AD mouse model (5xFAD). Here, we assessed the impact of limiting RyR2 open time on AD-related deficits in a relatively late occurring, slow developing AD mouse model (3xTG-AD) that bears more resemblance (compared to 5xFAD) to that of human AD. Using behavioral tests, long-term potentiation recordings, and Golgi and Nissl staining, we found that the RyR2-E4872Q mutation, which markedly shortens the open duration of the RyR2 channel, prevented learning and memory impairment, defective long-term potentiation, dendritic spine loss, and neuronal cell death in the 3xTG-AD mice. Furthermore, pharmacologically shortening the RyR2 open time with R-carvedilol rescued these AD-related deficits in 3xTG mice. Therefore, limiting RyR2 open time may offer a promising, neuronal hyperactivity-targeted anti-AD strategy.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
15.
Front Oncol ; 11: 641487, 2021.
Article in English | MEDLINE | ID: mdl-34094926

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide and its incidence continues to increase year by year. Endoplasmic reticulum stress (ERS) caused by protein misfolding within the secretory pathway in cells and has an extensive and deep impact on cancer cell progression and survival. Growing evidence suggests that the genes related to ERS are closely associated with the occurrence and progression of HCC. This study aimed to identify an ERS-related signature for the prospective evaluation of prognosis in HCC patients. RNA sequencing data and clinical data of patients from HCC patients were obtained from The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC). Using data from TCGA as a training cohort (n=424) and data from ICGC as an independent external testing cohort (n=243), ERS-related genes were extracted to identify three common pathways IRE1, PEKR, and ATF6 using the GSEA database. Through univariate and multivariate Cox regression analysis, 5 gene signals in the training cohort were found to be related to ERS and closely correlated with the prognosis in patients of HCC. A novel 5-gene signature (including HDGF, EIF2S1, SRPRB, PPP2R5B and DDX11) was created and had power as a prognostic biomarker. The prognosis of patients with high-risk HCC was worse than that of patients with low-risk HCC. Multivariate Cox regression analysis confirmed that the signature was an independent prognostic biomarker for HCC. The results were further validated in an independent external testing cohort (ICGC). Also, GSEA indicated a series of significantly enriched oncological signatures and different metabolic processes that may enable a better understanding of the potential molecular mechanism mediating the progression of HCC. The 5-gene biomarker has a high potential for clinical applications in the risk stratification and overall survival prediction of HCC patients. In addition, the abnormal expression of these genes may be affected by copy number variation, methylation variation, and post-transcriptional regulation. Together, this study indicated that the genes may have potential as prognostic biomarkers in HCC and may provide new evidence supporting targeted therapies in HCC.

16.
J Biol Chem ; 297(1): 100808, 2021 07.
Article in English | MEDLINE | ID: mdl-34022226

ABSTRACT

Ryanodine receptors (RyRs) are ion channels that mediate the release of Ca2+ from the sarcoplasmic reticulum/endoplasmic reticulum, mutations of which are implicated in a number of human diseases. The adjacent C-terminal domains (CTDs) of cardiac RyR (RyR2) interact with each other to form a ring-like tetrameric structure with the intersubunit interface undergoing dynamic changes during channel gating. This mobile CTD intersubunit interface harbors many disease-associated mutations. However, the mechanisms of action of these mutations and the role of CTD in channel function are not well understood. Here, we assessed the impact of CTD disease-associated mutations P4902S, P4902L, E4950K, and G4955E on Ca2+- and caffeine-mediated activation of RyR2. The G4955E mutation dramatically increased both the Ca2+-independent basal activity and Ca2+-dependent activation of [3H]ryanodine binding to RyR2. The P4902S and E4950K mutations also increased Ca2+ activation but had no effect on the basal activity of RyR2. All four disease mutations increased caffeine-mediated activation of RyR2 and reduced the threshold for activation and termination of spontaneous Ca2+ release. G4955D dramatically increased the basal activity of RyR2, whereas G4955K mutation markedly suppressed channel activity. Similarly, substitution of P4902 with a negatively charged residue (P4902D), but not a positively charged residue (P4902K), also dramatically increased the basal activity of RyR2. These data suggest that electrostatic interactions are involved in stabilizing the CTD intersubunit interface and that the G4955E disease mutation disrupts this interface, and thus the stability of the closed state. Our studies shed new insights into the mechanisms of action of RyR2 CTD disease mutations.


Subject(s)
Ion Channel Gating , Mutation/genetics , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics , Animals , Caffeine/pharmacology , Calcium/metabolism , DNA Mutational Analysis , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Mice , Protein Binding/drug effects , Protein Domains , Protein Subunits/chemistry , Protein Subunits/metabolism , Ryanodine/metabolism , Tritium/metabolism
17.
Biosci Rep ; 41(4)2021 04 30.
Article in English | MEDLINE | ID: mdl-33825858

ABSTRACT

Mutations in cardiac ryanodine receptor (RyR2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most CPVT RyR2 mutations characterized are gain-of-function (GOF), indicating enhanced RyR2 function as a major cause of CPVT. Loss-of-function (LOF) RyR2 mutations have also been identified and are linked to a distinct entity of cardiac arrhythmia termed RyR2 Ca2+ release deficiency syndrome (CRDS). Exercise stress testing (EST) is routinely used to diagnose CPVT, but it is ineffective for CRDS. There is currently no effective diagnostic tool for CRDS in humans. An alternative strategy to assess the risk for CRDS is to directly determine the functional impact of the associated RyR2 mutations. To this end, we have functionally screened 18 RyR2 mutations that are associated with idiopathic ventricular fibrillation (IVF) or sudden death. We found two additional RyR2 LOF mutations E4146K and G4935R. The E4146K mutation markedly suppressed caffeine activation of RyR2 and abolished store overload induced Ca2+ release (SOICR) in human embryonic kidney 293 (HEK293) cells. E4146K also severely reduced cytosolic Ca2+ activation and abolished luminal Ca2+ activation of single RyR2 channels. The G4935R mutation completely abolished caffeine activation of and [3H]ryanodine binding to RyR2. Co-expression studies showed that the G4935R mutation exerted dominant negative impact on the RyR2 wildtype (WT) channel. Interestingly, the RyR2-G4935R mutant carrier had a negative EST, and the E4146K carrier had a family history of sudden death during sleep, which are different from phenotypes of typical CPVT. Thus, our data further support the link between RyR2 LOF and a new entity of cardiac arrhythmias distinct from CPVT.


Subject(s)
Death, Sudden, Cardiac/etiology , Loss of Function Mutation , Ryanodine Receptor Calcium Release Channel/genetics , Ventricular Fibrillation/genetics , Calcium/metabolism , HEK293 Cells , Humans , Ryanodine/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Ventricular Fibrillation/metabolism , Ventricular Fibrillation/pathology
18.
J Am Heart Assoc ; 10(6): e017128, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33686871

ABSTRACT

Background The cardiac ryanodine receptor type 2 (RyR2) is a large homotetramer, located in the sarcoplasmic reticulum (SR), which releases Ca2+ from the SR during systole. The molecular mechanism underlying Ca2+ sensing and gating of the RyR2 channel in health and disease is only partially elucidated. Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT1) is the most prevalent syndrome caused by RyR2 mutations. Methods and Results This study involves investigation of a family with 4 cases of ventricular fibrillation and sudden death and physiological tests in HEK 293 cells and normal mode analysis (NMA) computation. We found 4 clinically affected members who were homozygous for a novel RyR2 mutation, G3118R, whereas their heterozygous relatives are asymptomatic. G3118R is located in the periphery of the protein, far from the mutation hotspot regions. HEK293 cells harboring G3118R mutation inhibited Ca2+ release in response to increasing doses of caffeine, but decreased the termination threshold for store-overload-induced Ca2+ release, thus increasing the fractional Ca2+ release in response to increasing extracellular Ca2+. NMA showed that G3118 affects RyR2 tetramer in a dose-dependent manner, whereas in the model of homozygous mutant RyR2, the highest entropic values are assigned to the pore and the central regions of the protein. Conclusions RyR2 G3118R is related to ventricular fibrillation and sudden death in recessive mode of inheritance and has an effect of gain of function on the protein. Despite a peripheral location, it has an allosteric effect on the stability of central and pore regions in a dose-effect manner.


Subject(s)
DNA/genetics , Death, Sudden, Cardiac/epidemiology , Heart Ventricles/physiopathology , Mutation , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular/genetics , Ventricular Function/physiology , Adolescent , DNA Mutational Analysis , Death, Sudden, Cardiac/etiology , Echocardiography , Electrocardiography, Ambulatory , Female , Heart Ventricles/diagnostic imaging , Heterozygote , Humans , Incidence , Israel/epidemiology , Male , Ryanodine Receptor Calcium Release Channel/metabolism , Survival Rate/trends , Tachycardia, Ventricular/complications , Tachycardia, Ventricular/epidemiology
19.
Sci Transl Med ; 13(579)2021 02 03.
Article in English | MEDLINE | ID: mdl-33536282

ABSTRACT

Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia, a condition characterized by prominent ventricular ectopy in response to catecholamine stress, which can be reproduced on exercise stress testing (EST). However, reports of sudden cardiac death (SCD) have emerged in EST-negative individuals who have loss-of-function (LOF) RyR2 mutations. The clinical relevance of RyR2 LOF mutations including their pathogenic mechanism, diagnosis, and treatment are all unknowns. Here, we performed clinical and genetic evaluations of individuals who suffered from SCD and harbored an LOF RyR2 mutation. We carried out electrophysiological studies using a programed electrical stimulation protocol consisting of a long-burst, long-pause, and short-coupled (LBLPS) ventricular extra-stimulus. Linkage analysis of RyR2 LOF mutations in six families revealed a combined logarithm of the odds ratio for linkage score of 11.479 for a condition associated with SCD with negative EST. A RyR2 LOF mouse model exhibited no catecholamine-provoked ventricular arrhythmias as in humans but did have substantial cardiac electrophysiological remodeling and an increased propensity for early afterdepolarizations. The LBLPS pacing protocol reliably induced ventricular arrhythmias in mice and humans having RyR2 LOF mutations, whose phenotype is otherwise concealed before SCD. Furthermore, treatment with quinidine and flecainide abolished LBLPS-induced ventricular arrhythmias in model mice. Thus, RyR2 LOF mutations underlie a previously unknown disease entity characterized by SCD with normal EST that we have termed RyR2 Ca2+ release deficiency syndrome (CRDS). Our study provides insights into the mechanism of CRDS, reports a specific CRDS diagnostic test, and identifies potentially efficacious anti-CRDS therapies.


Subject(s)
Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular , Animals , Arrhythmias, Cardiac , Calcium/metabolism , Death, Sudden, Cardiac , Mice , Mutation/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular/genetics
20.
Front Genet ; 12: 763807, 2021.
Article in English | MEDLINE | ID: mdl-35198000

ABSTRACT

Background: Due to high heterogeneity and mortality of low-grade gliomas (LGGs), it is of great significance to find biomarkers for prognosis and immunotherapy. Pyroptosis is emerging as an attractive target in cancer research for its effect on tumor immune microenvironment (TIME). However, the investigation of pyroptosis in LGGs is insufficient. Methods: LGG samples from TCGA and CGGA database were classified into two pyroptosis patterns based on the expression profiles of 52 PRGs using consensus clustering. A prognostic model was constructed by using the LASSO-COX method. ESTIMATE algorithm and single sample gene set enrichment analysis (ssGSEA) were used to characterize the TIME. Based on the differentially expressed genes between two pyroptosis patterns, favorable and unfavorable pyroptosis gene signatures were determined. Pyroptosis score scheme was constructed to quantify the pyroptosis patterns through gene set variation analysis (GSVA) method. Two external datasets and immunotherapy cohort from CGGA and GEO database were used to validate the predictive value of the pyroptosis score. The Human Protein Atlas website and Western blotting were utilized to confirm the expression of the selected genes in the prognostic model in LGGs. Results: Distinct overall survival and immune checkpoint blockage therapeutic responses were identified between two pyroptosis patterns. A low pyroptosis score in LGG patients implies higher overall survival, poor immune cell infiltration, and better response to immunotherapy of immune checkpoint blockage. Conclusion: Our findings provided a foundation for future research targeting pyroptosis and opened a new sight to explore the prognosis and immunotherapy from the angle of pyroptosis in LGGs.

SELECTION OF CITATIONS
SEARCH DETAIL
...